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Abstract We present a highly scalable metaheuristic approach to complex network
clustering. Our method uses a multicriteria construction procedure (MCP), con-
trolled by adaptable constraints of local density and local connectivity. The input
of the MCP - the permutation of vertices, is evolved using a metaheuristic based
on local search. Our approach provides a favorable computational complexity of
the MCP for sparse graphs and an adaptability of the constraints, since the criteria
of a ”good clustering” are still not generally agreed upon in the literature. Experi-
mental verification, regarding the quality and running time, is performed on several
well-known network clustering instances, as well as on real-world social network
data.

1 Introduction

Analysis of complex networks is a very lively area of inter-disciplinary research. In
physics, complex networks are studied as dynamic systems, with respect to the pro-
cesses of their growth, evolution and their structure [12, 22]. In computer science,
they are related to a large spectrum of practical applications, including data min-
ing [18], web engineering [19] or bioinformatics [1, 6]. Additionally, many popular
complex networks emerge from the analysis of current trends on the Internet, e.g.
social networks [3] and research citation networks [18].

These networks generally tend to have clustered structures. A cluster can be in-
formally described as a group of similar entities in the network, which generally
tend to create densely connected areas. A problem of searching for a decomposition
of the network into clusters is often modeled using graph theory and therefore, it is
referred to as graph clustering [17].
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There are numerous applications of graph clustering. In this paper, we focus
mostly on the applications in social networks, in which it is often referred to as
community detection [12]. These applications include marketing, recommendation,
personalization, media analysis and human resource management [13, 17]. Quite
a large attention is drawn also by the structure of the networks of terrorist orga-
nizations [13]. Clustering of social networks have also been studied in the context
of epidemiology of sexually transmitted diseases [14]. Other applications include
grouping of gene expressions in bioinformatics, most notably in protein interaction
[6] and gene-activation dependencies [1].

Unfortunately, due to the less formal nature of graph clustering, there exist many
different approaches, how to define, compute and evaluate clusters and clustering. It
is difficult to find out, how suitable a formulation is, since there is no metric of qual-
ity, which is generally agreed to be the most reliable, while being computationally
tractable [17]. Therefore, graph clustering is an interesting application for soft com-
puting, where one can use the emergence of augmented clustering not only to opti-
mize but also to observe the nature of the problem formulation. In this work, we are
dealing with these issues and come up with the concept of multicriteria constrution
procedures (MCPs), which encapsulate the selected criteria, while the optimization
of the input to the MCP is performed with a general metaheuristic.

In the terms of graph theory, a clustering of an undirected graph G= [V,E] can be
formalized as a set S = {V1,V2, ...,Vk} of disjoint subsets of V often called classes,
i.e. ∀i = 1..k Vi ⊂V . Let d = |E|

|V |(|V |−1)/2 be the density of the graph to cluster. Then,
the subgraphs G(Vi) induced by the classes Vi (∀i = 1..k) should be more dense
than the graph itself, i.e. ∀i = 1..k d(G(Vi)) > d(G). The values d(G(Vi)) will be
referred to as the intra-cluster densities. An important fact is that this condition is
very similar to the formalization of graph coloring and the clique covering problems
[10].

The paper is organized as follows. Section 2 provides an overview of the topic
and the related work. In Section 3, we propose the concept of MCPs and the meta-
heuristically optimized multicriteria clustering based on MCPs. In Section 4, we
provide the experimental results of our approach. Finally, in Section 5, we summa-
rize the work.

2 Background and Related Work

Let G be the complementary graph to G. In the graph coloring problem, the ob-
jective is to minimize the number of colors k for classes S = {V1,V2, ...,Vk}, where
∀i = 1..k d(G(Vi)) = 0. The minimal value of k, for which this is possible, is called
chromatic number and denoted as χ(G). Clearly, ∀ Vi ∈ S d(G(Vi)) = 1. The prob-
lem to obtain this partitioning will be referred to as the clique covering problem,
which is NP-hard [10]. It can be seen quite easily that clique covering is a spe-
cial case of graph clustering, where each cluster is a clique. On the other hand, the
most trivial constraint that ∀i = 1..k d(G(Vi))> d(G) often leads to trivial solutions,
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which should be avoided. Therefore, the formulation of the criteria for graph clus-
tering is understood as an issue of searching for a balance between this formulation
on one hand and the clique covering on the other [17]. Regarding the complexity
of the problems, it is worth mentioning that not only the clique covering but also
many of the meaningful graph clustering quality measures are known to be NP-hard
or NP-complete [5, 21]. Nevertheless, all these problems are related to the structure
of the graph. Although this is difficult to formalize, we can assume that the more
asymmetrical the graph is, the more information is hidden in the structure to guide
an optimization algorithm.

Regarding the relevant algorithms, hierarchical clustering uses a selected simi-
larity measure and either repeatedly divides the graph or merges some partial clus-
ters. In this sense, we will refer to either divisive or agglomerative clustering. In
hierarchical clustering, a tree of candidate clusters, called dendrogram, is used [17].
Another approach is represented by the spectral methods, using the eigenvalues of
the graph’s adjacency matrix, which is diagonalized and the vertices are reordered
so that the vertices in the same clusters are next to each other [17]. Local search
methods are used for the problem as well, however, they use the procedure to find a
single cluster for a vertex, which is then used as a seed [16]. A representative of the
visual and geometric methods is the spring force algorithm, which is often used to
visualize clustered graphs and thus also solves the problem in graphical representa-
tion [17].

In the clique covering problem, chromatic number of the complementary graph
can be estimated in polynomial time by sequential greedy heuristics, e.g. the well-
known Brélaz’s heuristic [2]. Another approach is the local search, representing a
very large class of algorithms based on iterative improving of current solutions. The
basic local search algorithm, hill climbing, uses elementary changes of solutions
to improve them [15]. Popular stochastic extensions of hill climbing include the
simulated annealing [20, 11] and tabu search [8].

3 The Proposed Approach

In this section, we describe the concept of MCPs and propose an MCP based on
local densities of clusters and local connectivities of their vertices as the criteria
for the solution construction. Then, we describe the metaheuristic, which is used to
optimize the input of MCPs, i.e. the permutation of vertices.

3.1 The Criteria for Graph Clustering

The objective of our approach to graph clustering is to minimize the number of
clusters in a clustering S of a graph G: min k = |S|; S = {V1,V2, ...,Vk}, subject to
the following global constraints:
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1. Each vertex is clustered and the clusters are non-overlapping: [V1∪V2∪ ...∪Vk] =
V ∧ [V1∩V2∩ ...∩Vk] = /0.

2. The clusters are more dense than the whole graph: ∀i = 1..k d(G(Vi))> d(G).

Furthermore, we consider the following local constraints, which are dynamic,
i.e. they are influenced by the current state during the construction of the clustering,
rather than remaining static for the whole procedure:

3. The relative connectivity of a vertex to be newly added to the cluster must be
higher than its relative connectivity to the residual, currently non-clustered sub-

graph:
wc

|Vc,i|
>

δr

|Vr|−1
, where Vc,i is the set of vertices in cluster c at the iteration

i of the MCP, wc is the number edges, brought into the cluster by the vertex to
be newly added and |Vr| and δr are the number of vertices and the degree of the
newly added vertex in the subgraph containing only the currently non-clustered
vertices.

4. If there are more candidate clusters, the one with highest connectivity is taken:
c= argmax

c

wc

|Vc,i|
, where for the cluster c, wc

|Vc,i| must be a feasible value, according

to the previous rule.
5. The vertex to be newly added must bring at least as many edges, as is the current

average intra-cluster degree in the particular cluster, while a small tolerance τ

may be sometimes allowed: wc + τ ≥
2|Ec,i|
|Vc,i|

, where Ec,i is the number of edges

in G(Vc,i).

Criteria 1 and 2 are implied from the basic properties a good clustering should
fulfill. Criterion 3 is used to verify, whether it is favorable to add v j to a cluster
or to rather create a new cluster and let some of the currently unclustered vertices
join it. Criterion 4 is used to solve the situations, when more clusters fulfil criterion
3. Finally, criterion 5 is used to ensure a relative uniformity of intra-cluster vertex
degrees, which is important in order to avoid situations, when several small clusters
are unnecessarily joined. Parameter τ plays an important role here, since τ = 0
leads to clusters with very uniform intra-cluster degrees, while τ > 0 is favorable
for clusters with stronger centrality.

3.2 The Multicriteria Construction Procedures (MCPs)

The general framework for an MCP is described in the pseudocode of Algorithm 1.
As the input, we have a permutation of vertices. In the step 2, we take the current
vertex v j from the permutation. In the step 3, we apply the criteria to choose a label
c, thus, joining v j to the corresponding cluster in the step 4. The step 5 is used to
update the auxiliary data specified in Section 3.1, which are needed to implement the
multicriteria cluster choice efficiently. This procedure is repeated, until all vertices
are clustered.
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Algorithm 1: A General Framework for an MCP
A General Framework for an MCP
Input: graph G = [V,E]
permutation P = [P1,P2, ...,P|V |] of vertices
Output: a clustering S of G

1 for i = 1..|V |
2 j = Pi
3 c = f ind cluster(v j)
4 Vc =Vc∪{v j}
5 update auxiliary data(Vc)
6 return S = {V1,V2, ...,Vk}

It is important that all the criteria are formulated in the way that during the im-
plementation, one can verify each of the criteria only by scanning the neighbors of
the currently chosen vertex. This restriction leads to an O(δ ) average complexity
per iteration of an MCP, where δ is the average degree of a vertex in the graph. Let
v j be the chosen vertex, c the chosen cluster and let Vc,i and Ec,i be the vertex and
edge set of cluster c at the i-th iteration of an MCP. Then, wc will be the number of
edges brought into the cluster by v j, counted by scanning of the neighbors of v j.

Using this notation, we will describe MCP-DC as our construction algorithm for
graph clustering. It uses the 5 criteria, as they have been described in the previous
section.

The implementation of the f ind cluster procedure is as follows. One can easily
derive that the local density needed in criterion 2 is fulfilled if:

d(G)|Vc,i|(|Vc,i|+1)−2|Ec,i|−2wc < 0. (1)

The local connectivity in criterion 3 is fulfilled if the following holds:

|Vc,i|−wc
Vr−1

δr
< 0. (2)

The maximization of the connectivity in criterion 4, i.e. the ratio wc
|Vc,i| , can be imple-

mented simultaneously with criterion 3, since the necessary values are calculated in
the verification of criterion 3. Finally, the criterion 5 yields the following condition,
where τ ≥ 0 is a parameter of tolerance for the intra-cluster degree of the newly
added vertex:

2|Ec,i|
|Vc,i|

− τ−wc ≤ 0. (3)

These observations lead to a construction algorithm, in which the output depends
on the permutation of vertices and, according to the following theorem, the number
of iterations is proportional to the number of edges.

Theorem 1. MCP-DC can be implemented to run in O(δ |V |) = O(|E|) time.
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Proof. |Vc,i| and |Ec,i| can be trivially recalculated in O(1) time per iteration. The
previous formulations of the MCP-DC criteria can be implemented by iterative sub-
tracting of a constant (in the cases of criteria 2 and 5) or the ratio Vr−1

δr
(in the case

of criterion 3) from the respective values. Explicit storage of values wc yields the
same for criterion 4. Restoration of the former values after subtraction can be done
by simulating the inverse process. All these operations need O(δ ) average time per
iteration, thus, they lead to an O(δ |V |) = O(|E|) running time of MCP-DC. ut

3.3 The Metaheuristic for Optimization of the Permutation of
Vertices in MCPs

The proposed criteria indicate that we are facing a highly constrained problem. On
the other hand, encapsulation of the constrained part in the MCP leads to two major
advantages in the optimization. First, for each permutation, there exists a clustering,
which will be constructed by an MCP. Secondly, it was confirmed in our experiments
that this formulation does not tend to create hard multimodal functions. In fact,
on real-world data, we were able to optimize the permutation using a simple local
search metaheuristic.

The metaheuristic we used, begins with a random permutation, which can be
generated in place in O(|V |) time [4]. The initial clustering is constructed using
an MCP. Then, at each iteration of local search, we try a single random vertex ex-
change in the permutation and evaluate the new number of clusters using the MCP.
The new permutation is accepted if and only if, for the new permutation P′ leading
to k′ clusters, it holds that k′ ≤ k, where k is the current number of clusters. The
local search is stopped when the number of iterations without improvement exceeds
certain threshold. We denote this as smax.

The choice of this simple metaheuristic was influenced by three factors. The first
reason is the nature of the landscape, which we indicated above. The second factor is
the O(|E|) complexity of the objective function - MCP-DC, where each redundant
run would significantly increase the global running time. Finally, the third factor is
that the general stochastic extensions, such as tabu search [8], do not tend to improve
the performance on this type of landscapes. It could perhaps be useful to find a
heuristic to guide the algorithm to choose the right. However, we have tried several
extensions, e.g. a roulette wheel selection of vertices according to their degrees but
the results did not show any improvement.

4 Experimental Evaluation

In this section, we present the experimental evaluation of our approach. First, we
visually illustrate the emergence of good clustering using our approach on a real-
world sample from a social network. Then, we provide computational results on
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several instances obtained by MCP-DC and MCP-DC with the metaheuristic. Last
but not least, we measure the running times for different network sizes.

4.1 The Emergence of Good Clustering

Fig. 1 illustrates the process of optimization using the local search algorithm and
MCP-DC on a small instance of real-world social network data, where in each pic-
ture, the vertices in the same cluster are grouped together. This network will be
referred to as Social network I. In this case, with MCP-DC and the metaheuris-
tic, we achieved 5 highly relevant communities. The drawings visually indicate this
emergence of clustered structure, where the evolution is driven only by random ex-
changes of vertices.

4.2 Computational Results

To evaluate our algorithm, we used it to solve the problem in two well-known bench-
marks - Zachary karate club [23] and the American college football network [7]. We
also used instances from two social networks, where the data from Social network
II was obtained using a web crawler. We also used a graph generated by an artificial
model [3]. Table 1 summarizes the computational results obtained in 10 independent
runs, smax is the maximal allowed number of iterations without improvement and τ

is the intra-cluster degree tolerance factor. The primary criterion was k - the number
of clusters. We also measured the average number of iterations and the time needed
to obtain the clustering.

Zachary karate club is known to consist of two partitions, we show the two parti-
tions found by our algorithm in Fig. 2. Fig. 2 also shows the result obtained for the
American college football network, which is known to consist of 10 conferences.
In both cases, our algorithm found the clusters reliably. Fig. 3 shows results on the

Fig. 1 An illustration of the emergence of gradually better clustering using the metaheuristic opti-
mization and MCP-DC. The drawings are done after 0, 100, 1000 and 10000 iterations (from left
to right). The number of clusters is optimized from 12 to 5, where the 5 clusters are highly relevant
for the data.
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Table 1 Comparison of the results obtained by only MCP-DC and MCP-DC with the metaheuristic
(MCP-DC+MH). The metrics are k - the number of clusters, the number of local search iterations
and the running time.

source |V |, |E| smax τ MCP-DC MCP-DC+MH
k k iter. time

Zachary karate club [23] 34,78 5×103 1 7 - 15 2 7035 < 1 s
American college football [7] 115,615 106 0 18 - 23 10 - 12 1237965 252 s
Social network I 52,830 5×104 0 12 - 16 5 - 6 76194 9 s
Social network II 500,924 5×104 1 161 - 197 12 - 15 154964 71 s
Artificial model [3] 500,3536 5×104 0 68 - 79 55 - 60 163449 188 s

social networks, where the clustering of the smaller network was verified manually,
while the relevance of the clustering of the larger network is indicated by the sparse-
ness in between. What is perhaps less visible in this drawing, is that the presence
of hubs is very pronounced in these clusters. We note that we did not provide a nu-
merical metric of quality (e.g. the Adjusted Rand Index [9]) due to exorbitant space,
which results obtained using such metrics, together with precise analysis would re-
quire.

Fig. 2 Visualizations of re-
sults, obtained by our ap-
proach for the benchmark
data: a clustering of the
Zachary karate club into 2
communities (left) and a
clustering of American col-
lege football league, which
is known to consist of 10
conferences (right).

Fig. 3 Visualizations of re-
sults, obtained by our ap-
proach for the social network
data: locally extracted sample
from Social network I (left)
and data obtained by crawling
Social network II, which con-
tains more pronounced hubs
(right).
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4.3 The Running Time

We have shown that MCP-DC has an O(|E|) complexity, which is favorable for
sparse graphs. In these experiments, we measure the time practically needed by
the MCP-DC with the metaheuristic. We used the crawler of Social network II to
obtain networks of different sizes, up to 10000 vertices. In our algorithm, we set
smax = 2×104 and τ = 1.

Table 2 The times needed to obtain the clustering on samples from Social network II with different
sizes.

|V | 500 1000 2000 10000
|E| 924 1876 4247 28675
k 14 - 19 26 - 38 68 - 82 449 - 453
iter. 75363 97621 177622 484703
time 36 s 1 m 34 s 6 m 102 m 49 s

Table 2 contains the results we obtained. First, we can see that the constant value
of smax causes that the number of iterations grows only moderately. This factor,
and the slow growth of |E|, which is typical for most complex networks, implies
that the computational time does not grow exponentially. To be fair, although solid
suboptimal results can be achieved even with smaller values of smax, the current
form of our approach is suitable mostly for medium-scale instances (around 103

vertices). However, we believe that the adaptability our approach maintains, is a key
to solid scalability also for very large graphs.

5 Conclusion

We presented the concept of multicriteria construction procedures (MCPs) for net-
work clustering. In this context, we designed MCP-DC - an MCP using the criteria
of local density and local connectivity. In our approach, the input of MCP-DC - the
permutation of vertices, is optimized using a general metaheuristic. This makes it
useful not only as a graph clustering algorithm but also as a tool to discover pros
and cons of the criteria, which are used to construct the clustering, since these are
still not generally agreed upon in the literature.

Our approach was verified on well-known benchmarks for graph clustering, as
well as on samples obtained from real-world social networks. These experiments
showed much promise both in relevance of results and scalability of the approach.
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