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Abstract

We propose a technique for mining minimum sets with bounded reachabil-
ity in real-world networks i.e. the smallest vertex sets such that any other
vertex is at distance at most k from at least one vertex of this set. Our
technique uses a simple but efficient mechanism. We first introduce new
edges to shorten the paths in our network to obtain a shortcut graph. As
the next step, we search for the minimum dominating set in the shortcut
graph. For this purpose, a variety of algorithmic approaches is applied and
computationally studied. To the best of our knowledge, this approach and
the impact of shortcut graph structure on the problem have not been system-
atically explored yet. Experimental results are presented for local samples
of two social networks, as well as large network science graphs, including
several research collaboration networks. Different profiles of k-reachable sets
were found for different networks. We find that k-reachable set sizes sharply
decline with increasing k and decreasing graph diameters in the context of
shortcut graphs obtained from social networks, as well as the largest con-
nected components of research collaboration networks. However, there are
also real-world networks, which seem to have slightly different profiles.
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1. Introduction

Complex networks are networks with non-trivial structure, which occur in
many real-world domains, including social networks [1], research collabora-
tion networks [2], protein-protein interaction networks [3] or the World Wide
Web [4]. The well known theory of the “six degrees of separation” is perhaps
the most widely known example of a reference to the small-world proper-
ties of real-world complex networks [5]. This popular theory states that the
shortest path between two arbitrary vertices of a large social network consists
of at most six edge traversals on average.

Dominating sets represent a highly relevant research topic in the context
of complex networks. A dominating set is a subset S ⊆ V of vertices of an
undirected graph G = (V,E) such that ∀v ∈ V it holds that v ∈ S or ∃w ∈ V
with {v, w} ∈ E and w ∈ S, i.e. each vertex is in the dominating set or has a
neighbour in the dominating set. The cardinality of a minimum dominating
set is often called domination number and is denoted by γ. The minimum
dominating set problem (MDS) is one of the classical NP-hard combinatorial
optimisation problems [6], with a close relation to distances in real-world
networks and their small-world properties.

Distance-based perspective on dominating sets. Let G = (V,E) be an undi-
rected graph and let dG(v, w) be the shortest path length between two ver-
tices v, w ∈ V in G. Then, a set S ⊆ V is a dominating set if ∀v ∈ V ∃w ∈
S (dG(v, w) ≤ 1).

This distance-based perspective on MDS leads to a natural generalisation of
the problem. From this point of view, a dominating set is a set of vertices such
that each vertex is at distance at most 1 to some vertex of the dominating set.
Therefore, it represents a set of “central” vertices of the graph. Suppose that
one substitutes the upper bound for the distance by an integer parameter
k ≥ 0. For k = 0, we have that S = V . For k = 1, we obtain the original
problem of searching for MDS. However, one may consider k ≥ 2, for which
smaller sets of “central” vertices in a larger bounded distance are identified.
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There are numerous application domains for this generalised perspective
on MDS. Some of them include identification of hubs [7], fast network dis-
tance estimation [8], or exploration of stability and vulnerability of real-world
networks [9] such as water distribution networks [10] and electrical power net-
works [11]. Other related topics are represented by the modelling of attacks
and visualisation in cyber security [12], modelling of rumour propagation [13],
detection of missing edges in social networks [14] or the use of clustering met-
rics in graph-based modelling [15].

To formalise this generalised perspective on MDS, we define the term
shortcut graph, which models the problem by adding shortcuts between more
distant vertices. To the best of our knowledge, the idea of shortcut graphs
and k-reachability has not been explored before, even though it seems very
intuitive on the surface.

Shortcut graphs. Let G = (V,E) be an undirected graph. The shortcut
graph Gk of order k ≥ 0 is a graph Gk = (Vk, Ek) such that Vk = V and
Ek = {{v, w} : dG(v, w) ≤ k, v 6= w}.

For k = 0, we obtain that Gk is a set of isolated vertices and for k = 1, we
have Gk = G. Note that for k ≥ 2, one obtains a densified graph with all
triplets of vertices with a path of length 2 extended with a direct shortcut
to a triangle. The ratio of the number of triangles and the number of con-
nected triplets is the clustering coefficient metric [16], which is usually used
to measure the cohesion in complex networks. Therefore, one can naturally
expect the shortcut graphs to have a more pronounced clustered structure.
An analogical process of shortcut insertion is applied for higher values of k,
leading to non-increasing sizes of small dominating sets for growing values of
k.

Shortcut graphs and minimum dominating sets are closely related to the
concepts of clusters [17], communities [18], and their detection [19, 20, 21].
Dominating sets represent groups of “central” vertices, which decompose the
network into clusters such that each vertex is in a distance to a dominating set
vertex, which is upper bounded by 1. The use of shortcut graphs generalises
this distance to any fixed value k ≥ 0. We will refer to a dominating set in
a shortcut graph Gk as a k-reachable set. The concept of k-reachable sets is
closely related to the hierarchy of communities [22]. Since different values of
k lead to decompositions with different maximum distances to k-reachable
set vertices, the resulting clusters have increasingly coarse granularities with
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increasing k. A similar concept is represented by k-medoid clustering, in
which the aim is to find a fixed set of k vertices such that distances to
medoids in the clusters are minimised [23, 24].

It is worth noting that the traditional perspective on MDS concerns
several other real-world applications. Additional constraints are sometimes
added to model a specific real-world situation. The most widely known ap-
plications include routing in wireless ad-hoc networks [25, 26, 27] using con-
nected dominating sets [28], multi-document summarisation [29] or positive
influence dominating sets in social networks [30, 31].

Contributions. In this paper, we explore the k-reachability in real-world net-
works using shortcut graphs and several approaches to solve the minimum
dominating set problem.

From the network mining perspective, we explore the non-increasing pro-
file of k-reachable sets with growing k. Critical values of k are identified for
several networks of small to medium sizes. For such values of k, relatively
small k-reachable sets with a single-digit size can be found.

The networks studied in this paper include data from two different social
network services, as well as instances from Newman’s network data reposi-
tory. This data set covers networks from a wide range of application areas,
including research collaboration networks, a snapshot of the Internet or a
power grid.

From the algorithmic perspective, we discover that the integer linear pro-
gramming (ILP) formulation of the problem can be solved relatively effi-
ciently by ILP solvers for graphs with thousands of vertices. We use the
open-source ILP solver CBC from the COIN-OR package. It is well-known
that ILP branch-and-cut-solvers such as CBC or CPLEX are quite efficient in
solving MDS for sparse graphs up to a relatively high number of vertices [32].
However, memory demands of ILP solvers seem to grow quickly for large and
dense shortcut graphs. Therefore, experimental results are also presented
for a greedy approximation algorithm, the ant-based algorithm ACO-LS-S,
as well as the order-based randomised local search algorithm RLSo. These
results indicate that while RLSo provides results of good quality for most of
the graphs, ACO-LS-S seems to be useful for shortcut graphs of large social
networks. For some of the instances, RLSo provided the best result, because
of excessive memory demands of the ILP solver.

Our results indicate similar profiles of dominating set sizes for networks
from the two social network services mentioned above, with a sharp decline
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of the dominating set size for growing k, and with a single dominating vertex
for k = 5. A very similar result is obtained for the Internet snapshot, with
the minimum value being reached for k = 6. For large research collaboration
networks, the patterns of decrease in dominating set size are more moderate,
with the minimum values reached for 8 ≤ k ≤ 11. The decline pattern be-
comes sharper when only the largest connected component of these networks
is taken into account. However, this has no impact on the critical values
identified. For a power grid network, we obtain that its structure is much
more resilient from the perspective of k-reachability, with a gradual decrease
in dominating set size, and a single dominating vertex obtained for k = 23.

The paper is structured as follows. In Section 2, we review the algorithms
used to search for small dominating sets, with a particular focus on methods
suitable for shortcut graphs obtained from real-world networks. In Section
3, we explore the concept of shortcut graphs and the impact of shortcuts
on network structure. In Section 4, we present the experimental results for
different real-world networks and values of k. The impact of increasing k on
the size of dominating sets in the real-world networks is also studied. Finally,
Section 5 presents a discussion and conclusions of this research.

2. Searching for Small Dominating Sets in Shortcut Graphs

MDS is an NP-hard problem [6]. The most efficient exact algorithm
requires O(1.5137n) time to solve MDS [33], which is intractable for large
graphs. However, ILP formulations of the MDS problem and its variants
seem to lead to surprisingly well scalable exact approaches to solve these
problems [32].

For very large scale instances, approximation algorithms or heuristics
represent practical solving techniques. Generally, the best approximation
ratio achievable in polynomial time is O(log ∆), where ∆ is the maximum
degree of a vertex in the graph. Sublogarithmic approximation seems to
remain hard [34].

Additionally, the MDS problem remains NP-hard for restricted graph
classes. NP-hardness of the MDS problem, or hardness of its approximation,
have been proven for unit disk graphs, which represent a model of wireless
networks [35], grids [36], bounded degree graphs [37], and power law graphs
[38], which occur in a wide range of real-world applications [4].

As we have outlined above, the MDS problem is relatively straightforward
to formulate as an ILP. For the purpose of this paper, we use the ILP model
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outlined below. The ILP models derived from the considered graphs will then
be solved using the CBC branch-and-cut ILP solver. This solver is available
as a part of COIN-OR, which is a popular open-source mixed ILP solving
software package [39, 40].

In the following, we formulate the MDS problem as an ILP problem, and
shortly describe the three main heuristic approaches that are employed in
this paper to find small dominating sets in shortcut graphs.

ILP model of the MDS problem. The standard ILP model for the MDS prob-
lem makes use of a binary variable xi ∈ {0, 1} for each vertex vi ∈ V . If, after
solving the problem with an ILP solver, xi = 1 this means that vi forms part
of generated optimal solution. Otherwise, when xi = 0, vi does not form part
of that solution. Then, the MDS can be formulated in terms of the following
ILP model:

min
n∑

i=1

xi (1)

s.t. xi +
n∑

j;{vi,vj}∈E

xj ≥ 1 ∀i = 1, 2, ..., n. (2)

In the section on the experimental results, it will be seen that this formulation
leads to a surprisingly well scalable approach to solve the problem. However,
its scalability decreases not only with increasing n but also with increasing
k i.e. the density of the graph also plays a role in the efficiency of the ILP
approach.

Greedy approximation algorithm for MDS. This algorithm is derived from
the approximation algorithm for set cover and achieves an approximation
ratio of H(∆) =

∑∆
i=1 1/i = O(log ∆) [41].

It starts with an empty dominating set S = ∅. At each step, given the
current partial dominating set S, a vertex v ∈ V is labelled non-dominated
if v /∈ S and for all v′ ∈ V (with v 6= v′) it holds that {v, v′} ∈ E ⇒ v′ /∈
S i.e. vertex v is not in the dominating set and has no neighbour in the
dominating set. Let w(v, S) denote the number of non-dominated vertices in
{v} ∪ {v′ ∈ V : {v, v′} ∈ E} i.e. among the neighbours of v and v itself. At
the current construction step, the greedy approximation algorithm takes the
vertex with the highest value of w(v, S) and puts it into S. The algorithm
stops when S is a dominating set.

6



This approach has the advantage of being fast and producing the logarith-
mic approximation, which seems to be the best approximation obtainable for
general graphs. Several variants of this algorithm have been experimentally
studied [42]. On the other hand, previous studies have shown that dominat-
ing sets empirically obtained by this algorithm tend to be larger than results
produced by hybrid and randomised search algorithms [43, 44].

Hybrid algorithms for MDS. Hybrid algorithms for MDS include both tech-
niques based on genetic algorithms and ant colony optimisation. Hybrid
genetic algorithms combine crossover operators with local search subroutines
[44, 45]. Very successful approaches are hybrid ant colony optimisation algo-
rithms, which combine an ant-based construction heuristic with local search
subroutines. In this paper, we will make use of an existing ant colony optimi-
sation algorithm—known as ACO-LS—that has been applied to the classical
MDS problem [44]. There is also a variant of this algorithm using prepro-
cessing, applied to the minimum weight dominating set problem [46].

ACO-LS is a hybrid ant-based heuristic, which works as follows. The
construction graph for ACO-LS is a complete graph, in which vertices corre-
spond to vertices of the original graph. Pheromone is placed on vertices of
the construction graph, determining the probability of occurrence of the ver-
tex in the dominating set. In the beginning, an initial amount of pheromone
is placed on each vertex. A dominating set is then constructed by adding
vertices one by one. The probability for each vertex to be added is propor-
tional to the amount of pheromone on it. The construction terminates once
the constructed set is a dominating set.

At each iteration of ACO-LS, ns dominating sets are constructed. The
smallest of these dominating sets is taken and improved using local search.
This local search subroutine iteratively excludes redundant vertices from the
dominating set. A vertex v is redundant in dominating set S iff S\{v} is also a
dominating set. Two strategies in local search are used probabilistically. The
first strategy is chosen with probability pr and excludes redundant vertices in
a random order, while the second strategy eliminates redundant vertices in
increasing order of their degree. The improved dominating set is then used
to reinforce the pheromone on vertices, which are in the dominating set. The
new pheromone value for a vertex in this dominating set is ρτ + 1

10+f−F ,
where τ is the original pheromone value, ρ is the pheromone evaporation
rate, f is the cardinality of the best dominating set in the current iteration
of ACO-LS, and F is the cardinality of the smallest dominating set found so
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far. For the other vertices, the new pheromone value will simply be ρτ [44].
The literature also offers a modified version of ACO-LS, known as ACO-

LS-S [43]. ACO-LS-S differs in two aspects from ACO-LS. Firstly, the vertices
from the solution obtained by the greedy approximation algorithm obtain a
higher initial pheromone value. Secondly, ACO-LS-S operates on the original
graph instead of a complete construction graph. Therefore, once a vertex is
added to the dominating set, the construction can only proceed with its
neighbours. This helps to provide an approach, which is more scalable to
large graphs [43]. For the purpose of this paper, we use ACO-LS-S, since it
is much more scalable to the sizes of graphs we explore.

Order-based algorithm for MDS. The order-based randomised local search
algorithm (RLSo) for MDS is a technique, which also combines a greedy
construction procedure with a local search mechanism. However, RLSo uses
the local search to optimise the input to the greedy construction procedure.
In the following, we review the description of RLSo from our previous work
[43].

In each iteration, RLSo uses a greedy algorithm that maps a permutation
of vertices π to a dominating set S. The mapping algorithm starts with an
empty dominating set S. This is followed by an iterative procedure. In each
iteration, the current vertex v is taken from a fixed permutation of vertices
π. This is followed by a check whether v is non-dominated or some neighbour
of it is non-dominated. If yes, v is added to S and v is set as a dominated
vertex. After the addition of v to S, all neighbours of v are set to dominated,
too.

RLSo starts by using the greedy approximation algorithm to construct
the initial dominating set S. The vertices of S are then used to construct an
initial permutation π. This is accomplished by placing the vertices from S at
the first positions of π, while the remaining vertices from V \S after placed
after then vertices from S, in a random order. This is followed by the local
search. In each step of the local search, RLSo performs the jump operator
on a vertex in π chosen uniformly at random.

Operator jump(i, P ) takes the vertex at position i in permutation π and
puts it to the first position in the permutation. The other vertices are then
shifted to the right i.e. vertices formerly in positions 1, 2, ..., i− 1 are moved
to positions 2, 3, ..., i. The resulting permutation π′ is returned.

A new dominating set S ′ is then constructed using the modified permu-
tation π′. It is then checked whether S ′ is a dominating set with at most
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as many vertices as S. If this is true, π′ and S ′ are accepted as the new
permutation π and the new dominating set S.

Lower bounds. There are several different lower bounds for MDS. Trivial
lower bounds simply use the number of connected components c, the maxi-
mum degree ∆, and the approximation properties of the greedy algorithm.

Let γ be the domination number of a graph G i.e. the size of a minimum
dominating set of G. Note that each connected component of G has to be
dominated by at least one vertex i.e. c ≤ γ. Another lower bound is implied
by the fact that each vertex can dominate at most ∆ + 1 other vertices.
Therefore, n/(∆ + 1) ≤ γ.

Another lower bound is implied by the logarithmic approximation guaran-
tee of the greedy algorithm. The approximation is at most H(∆) ≤ ln(∆)+1
times larger than a minimum dominating set. Let γgm be the maximum size
of a dominating set obtained in repeated runs of the greedy approximation
algorithm. Then, γgm/(ln(∆) + 1) ≤ γ.

The last lower bound follows from the ILP formulation of MDS. By drop-
ping the integrality constraints of the binary variables, one obtains the con-
tinuous LP relaxation of the problem, whose solution results in a very good
lower bound.

3. Shortcut Graphs and k-Reachability in Real-world Networks

The methods introduced in the previous section can be used to construct
optimal or near-optimal solutions to MDS and provide bounds for the opti-
mum. In our previous study, the abilities of the greedy approximation algo-
rithm, ACO-LS-S, and RLSo to produce small dominating sets for real-world
networks were explored [43].

In this paper, we are facing a slightly different point of view on MDS
than in the previous works. Even though the same algorithms are available
to explore dominating sets in shortcut graphs, it is the actual structure of
the shortcut graphs, which influences the properties of MDS. As we have
indicated above, the choice of the right algorithms to solve MDS depends
on the graph structure. In the following, we will face the problem of solving
the MDS problem in gradually densified shortcut graphs with up to tens of
thousands of vertices.

Shortcut graphs naturally shorten the paths between vertices and can
shorten the diameter of the network. The impact of such a shortening is il-
lustrated in Figure 1, in which we depict the largest connected component of
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k = 1 k = 2 k = 3

k = 4 k = 5

Figure 1: Illustration of shortcut graphs for the largest connected component of network
homer.

a coapperance network for Illiad and Odyssey by Homer from the DIMACS
graphs [47] and its corresponding shortcut graphs. Network homer was cho-
sen for this illustration, since it combines most of the properties we aim to
explore, including typical distance shortening in shortcut graphs, as well as a
degree distribution, which seems to be well approximable by the power law.

In all of these drawings, the vertex with maximum degree is put in the
centre and other vertices are grouped into layers, based on the shortest path
length between the central vertex and vertices in the particular layer. With
growing k, one can see the shortened paths in the shortcut graphs in the
largest connected component by gradual reduction of the number of layers
in the drawings.

This is essentially the phenomenon we aim to explore in this paper. Short-
cut graphs of order k represent instances, which model the bounded “degree
of separation” as a neighbourhood of our vertex explicitly. In the context of
social networks, this leads to a model, in which we are able to explore the
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k = 1 k = 2 k = 3 k = 4 k = 5

Figure 2: Visualisations of adjacency matrices for shortcut graphs constructed for the
largest connected component of network homer.

contacts of our contacts directly and explore the gradual “collapse” of the
network as k increases.

Figure 2 illustrates the densification in adjacency matrices of shortcut
graphs for the largest connected component of network homer. Cells in
Figure 2 represent adjacencies of corresponding vertices. The vertices are
reordered according to MDS of the network, grouping the vertices into clus-
ters containing a vertex from MDS and its neighbours. A sharp densification
effect for increasing k can be observed, while the underlying pattern seems to
be preserved. It is worth noting that for k = 1, the adjacency matrix is very
sparse, leading to noticeable adjacencies mostly near the diagonal. The dom-
inating set vertices can be noticed as intersections of the short lines around
the diagonal. For k = 2, we obtain a sharp densification mainly within the
clusters. An interesting transition seems to occur for k = 3, for which many
inter-cluster edges seem to be introduced. These patterns are somewhat sim-
ilar to the patterns observed for other real-world network models, such as
the Kronecker graphs [48].

In Figure 3, the degree distributions of shortcut graphs for the largest
connected component of homer are depicted. These plots illustrate the strong
impact of shortcuts on the structural properties of our graphs. As we have
indicated above, the structural and quantitative properties have a direct
impact on the hardness and approximability of MDS [35, 36, 37, 38], as well
as on the suitable choice of algorithms to solve MDS in practice [42, 43, 44].

The degree distribution of homer can be approximated relatively well by
the power law in form P (k) ≈ k−1.498. This is illustrated in Figure 3 in the
first histogram for k = 1. The sizes of the bins in the histograms are 3 for
k = 1 and 10 for the rest of the plots. The linear model in logarithmic scale is
fitted for data with k ≤ 40, with the long-tail cut off, and is represented by the

11



10-3

10-2

10-1

100

100 101 102

ra
tio

 o
f v

er
tic

es
 w

ith
 th

e 
de

gr
ee

degree of a vertex

homer (k=1)

10-3

10-2

10-1

100

100 101 102

ra
tio

 o
f v

er
tic

es
 w

ith
 th

e 
de

gr
ee

degree of a vertex

homer (k=2)

10-3

10-2

10-1

100

100 101 102

ra
tio

 o
f v

er
tic

es
 w

ith
 th

e 
de

gr
ee

degree of a vertex

homer (k=3)

10-3

10-2

10-1

100

100 101 102

ra
tio

 o
f v

er
tic

es
 w

ith
 th

e 
de

gr
ee

degree of a vertex

homer (k=4)

10-3

10-2

10-1

100

101 102

ra
tio

 o
f v

e
rt

ic
e

s 
w

ith
 th

e
 d

e
g

re
e

degree of a vertex

homer (k=5)

Figure 3: Plots of degree distributions for shortcut graphs constructed for the largest
connected component of network homer.

bold red line. This produced a model with R2 value 0.9502, which indicates a
fairly representative power-law model of the network. Figure 3 also illustrates
that shortcuts completely change the statistical properties of the graph. A
pattern of a gradual shift to the long-tail end of the distribution can be
observed, which is a natural consequence of the densification. However, it
will be interesting to see how well the heuristics for MDS perform on these
non-standard topologies, and how good lower bounds can be obtained for
these shortcut graphs.

A similar process of shortcut insertion is illustrated for network dolphins
in Figure 4. This network represents a social network of bottlenose dolphins
[49]. It is of interest to us, because—among the smaller graphs—its “col-
lapse” is relatively slow as k increases. Similar phenomena will be observed
also for larger graphs in the next section.

4. Experimental Results

In this section, we present the experimental results obtained for MDS in
shortcut graphs constructed for different real-world networks. Let us first
describe the methodology of our experiments, the parameterisation of the
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k = 1 k = 2 k = 3

k = 4 k = 5

Figure 4: Illustration of shortcut graphs for dolphins.

algorithms, as well as the studied metrics.

Methodology of experimental evaluation. We have explored the small domi-
nating sets in shortcut graphs for several real-world networks. As there are
multiple approaches available for the problem, we have used the ILP formu-
lation solved by the CBC branch-and-cut solver from the COIN-OR package
[39, 40], the greedy approximation algorithm, denoted by GREEDY, as well
as the ant-based algorithm ACO-LS-S, and the order-based randomised lo-
cal search algorithm RLSo. There are two main aspects we explore for the
problem and the algorithms to solve it.

1. Network aspect. This aspect is closely related to the properties of MDS
in the context of complex network analysis. The aim is to determine
how sharply the dominating set cardinality decreases with increasing k.
In other words, we explore the cardinality of “critical set” of vertices
to identify possible vulnerabilities and understand the stability and
security in the networks.
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2. Algorithmic aspect. The aim is to determine, which of the approaches
are suitable for MDS in shortcut graphs. This is also related to the
degree distribution and overall structure of shortcut graphs. We explore
the impact of increasing k and the change in degree distribution on the
algorithmic properties of MDS and the suitable algorithm choice.

We provide the results for increasing values of k, until the dominating set
size reaches the number of connected components of the original graph. We
will call a value of k critical, if it is the lowest value of k such that there
is a dominating set of a single-digit size for such a value. Additionally, we
will call a value of k marginal, if it is the lowest value of k such that the
size of the dominating set for this value is equal to the number of connected
components. The critical value of k will represent a distance such that it is
possible to reach any vertex from a set of less than ten vertices within k edge
traversals. In other words, it will represent a value, for which there is a very
small set of “central” k-reachable vertices. The marginal value of k will then
represent a distance such that it is possible to reach any vertex from a single
vertex within k edge traversals.

For networks with multiple connected components, we considered the
entire network, as well as the largest connected component only. For each
shortcut graph, we will also provide several metrics [50], to better relate the
performance of the algorithms and properties of the k-reachability problem
to the network structure, size, and density.

We have solved the corresponding ILP problem using CBC with a 10
hour time limit. GREEDY was applied 1000 times to each (shortcut) graph.
The result reported for GREEDY is the size of the best one among the
1000 generated solutions. The other algorithms were applied 10 times to
each (shortcut) graph. In preliminary experiments, ACO-LS in its original
form [44] had a tendency to perform very slowly because of the quadratic
complexity of the solution construction process. This is because a complete
construction graph is used in this algorithm. This led to results of low quality
and we decided to make use of ACO-LS-S, instead. To achieve scalability of
the approach to large graphs, only ns = 1 dominating set was constructed
per iteration and the probability for the random choice of a vertex in local
search was pr = 1. This choice is motived by the fact that a random choice
is less time-consuming than choosing a vertex based on its degree. A custom
priority queue data structure could potentially be used to provide an efficient
implementation of a choice based on the degree. However, our preliminary
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efforts indicated that this does not seem to lead to a significant improvement
of the results. Finally, the pheromone evaporation rate was ρ = 0.985. For
vertices used in the initial dominating set constructed by GREEDY, the
initial pheromone value was set to 1000.0, while the initial pheromone value
for the other vertices was 10.0.

Each run of ACO-LS-S and RLSo was either stopped after 60 minutes or
when no improved solution was found during the last 106 iterations. A con-
stant number of iterations without improvement was chosen as a practically
manageable stopping criterion. The experimental software was written in
C++ using Qt, compiled with 64-bit Visual Studio 2013 compiler. A 64-bit
platform was chosen because of the high memory demand of the approaches,
resulting from some of the large networks with large k. As the ILP solver,
we used CBC from COIN-OR 64-bit binary Windows package compiled with
Intel 11.1 compiler. All experiments were carried out on a machine with Intel
Core i7-5960X 3 GHz CPU with 64 GB RAM.

Results for social networks. The first set of results is presented for data ob-
tained from social networks Google+ and Pokec. The Google+ networks are
constructed from the public information on circles, obtained by a web crawler
using breadth-first search. Therefore, the social network data samples repre-
sent local subgraphs of different sizes. Pokec is a Slovak social network with
publicly available information on contacts obtained by a similar web crawler.
This social network has previously been studied in large scale [51] and its
large snapshot forms part of the Stanford’s SNAP network data set1.

Table 1 summarises these results. The first column contains the name of
the graph. The second column presents the value of k used. The next columns
contain the metrics computed for the corresponding (shortcut) graphs. This
includes the number of vertices n, the number of edges m, the average local
clustering coefficient C, the density δ, the number of connected components
c, as well as the diameter d. It is worth noting that computing C is extremely
time-consuming for large and dense graphs, which is why some of these values
are omitted. This is followed by the domination number γ or its lower bound
computed for the particular instance. If the proven optimum was reached
by CBC, then an equal sign is used in this column. The lower bound sign
≤ means that only a lower bound has been found by CBC, while symbol
“-” means that the memory limit has been exceeded an no solution has been

1http://snap.stanford.edu/data/
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Table 1: Experimental results of the studied algorithms for samples from social networks
Google+ and Pokec.

graph k n m C δ c d γ CBC GRE ACO- RLSo
LS-S

Samples from Google+*

gplus 500 1 500 1006 0.32 0.008 1 6 42 42 42 42 42
2 6644 0.823 0.053 3 6 6 6 6 6
3 21717 0.765 0.174 2 1 1 1 1 1

gplus 2000 1 2000 5343 0.25 0.003 1 7 170 170 175 170 170
2 52257 0.713 0.026 4 15 15 16 15 15
3 235357 0.647 0.118 3 2 2 2 2 2
4 738687 0.730 0.37 2 1 1 1 1 1

gplus 10000 1 10000 33954 0.218 0.001 1 8 861 861 891 862 861
2 588469 0.629 0.012 4 82 82 89 82 82

3 4.3 × 106 0.585 0.087 3 9 9 11 9 9

4 1.7 × 107 0.746 0.33 2 1 1 1 1 1

gplus 20000 1 20000 81352 0.192 <0.001 1 9 1716 1716 1799 1727 1717

2 2 × 106 0.598 0.01 5 159 159 176 160 163

3 1.8 × 107 0.572 0.089 3 19 19 23 19 19

4 7.3 × 107 0.777 0.363 3 2 2 3 2 2

5 1.4 × 108 0.874 0.708 2 1 1 1 1 1

gplus 50000 1 50000 2.3 × 105 0.176 <0.001 1 10 4568 4568 4815 4639 4586

2 9.5 × 106 0.569 0.008 5 461 461 509 462 483

3 5.5 × 107 0.552 0.044 3 43 43 52 43 49

4 3 × 108 0.242 3 ≥ 2 - 10 6 6

5 8 × 108 0.639 2 1 - 1 1 1

Samples from Pokec*

pokec 500 1 500 993 0.41 0.008 1 4 16 16 16 16 16
2 11608 0.912 0.093 2 1 1 1 1 1

pokec 2000 1 2000 5893 0.294 0.003 1 6 75 75 75 75 75
2 68898 0.715 0.034 3 6 6 6 6 6
3 289707 0.682 0.145 2 1 1 1 1 1

pokec 10000 1 10000 44745 0.209 0.00089 1 7 413 413 413 413 413
2 683759 0.533 0.014 4 32 32 32 32 32

3 5.3 × 106 0.552 0.106 3 2 2 2 2 2

4 2 × 107 0.731 0.407 2 1 1 1 1 1

pokec 20000 1 20000 102826 0.195 <0.001 1 8 921 921 922 921 921

2 1.7 × 106 0.51 0.009 4 74 74 76 74 74

3 1.5 × 107 0.522 0.074 3 6 6 6 6 6

4 6.3 × 107 0.672 0.315 2 1 1 1 1 1

pokec 50000 1 50000 281726 0.173 <0.001 1 9 2707 2707 2761 2771 2716

2 5.3 × 106 0.450 0.004 5 221 221 242 222 234

3 5.5 × 107 0.417 0.044 3 21 21 22 21 21

4 3 × 108 0.242 3 2 2 2 2 2

5 8 × 108 0.639 2 1 - 1 1 1

* All of these network samples are publicly available at:

http://davidchalupa.github.io/research/data/social.html.
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found. The last four columns contain the sizes of the smallest dominating
sets constructed by CBC, GREEDY, ACO-LS-S, and RLSo for each instance.

For most of the instances, CBC was able to find the optimum. It is
worth noting that the computational and the memory demands seem to grow
quickly with both growing number of vertices, and growing k. This is the
reason why CBC was not able to cope with the memory demands and was
not able to produce any result for some of the largest instances. While CBC
finds the optimum in seconds for the smallest graphs, it took more than 2
hours to find the optimum for gplus 50000, k = 3, and more than 7 hours for
pokec 50000, k = 3. For many of the large and dense shortcut graphs, CBC
requires tens of gigabytes of RAM. It also requires gigabytes of RAM to store
the shortcut graphs themselves if heuristic methods are used. Therefore, 64-
bit versions of the software need to be used to obtain these results.

The obtained results confirm that GREEDY finds slightly larger domi-
nating sets than ACO-LS-S and RLSo, especially for smaller values of k. For
larger values of k, the differences between algorithms become less significant
as the sizes of the dominating sets sharply decrease. Interestingly, ACO-LS-S
seems to outperform RLSo for some of the larger networks with 20000 and
50000 vertices. As the next results indicate, this phenomenon has not been
detected for other instances and may be specific to the inherent structural
properties of these online social networks. This happens for several shortcut
graphs and one can observe that they were constructed for larger samples
with mainly k = 2 and with k = 3 in one instance. The diameters are
between 3 and 5, while the values of C range from 0.45 to 0.598 for these
instances.

For almost all of the instances, the proven optimum was found by ei-
ther CBC or some of the heuristics. The only exception is the instance
(gplus 50000, k = 4), for which CBC was unsuccessful, presumably due to
excessive memory demands. The trivial lower bound is still relatively distant
from the dominating set of size 6 found by ACO-LS-S and RLSo.

The critical values for samples with 10000 vertices are k = 3, while for
20000 and 50000 vertices, the critical value rises to k = 4. Marginal values
of k = 5 have been identified for both of the largest samples with 50000
vertices.

Results for large research collaboration networks. These networks are taken
from Newman’s network data repository. Network astro-ph represents col-
laborations in astrophysics, while networks cond-mat, cond-mat-2003, and
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Table 2: Experimental results of the studied algorithms for network science instances

graph k n m δ c d γ CBC GRE ACO- RLSo
LS-S

Graphs from Newman’s network data repository (research collaboration networks [2])

astro-ph 1 16706 121251 0.001 1029 14 2930 2930 3012 3157 2930

2 1.8 × 106 0.013 7 1464 1464 1530 1673 1471

3 1.5 × 107 0.105 5 1163 1163 1187 1247 1171

4 4.8 × 107 0.346 4 1074 1074 1083 1112 1079

5 8.2 × 107 0.587 3 1044 1044 1048 1056 1045

6 108 0.717 3 1035 1035 1037 1039 1035

7 1.1 × 108 0.768 2 1031 1031 1031 1032 1031

8 1.1 × 108 0.784 2 1029 1029 1029 1029 1029

cond-mat 1 16726 47594 <0.001 1188 18 3394 3394 3442 3590 3394
2 322714 0.002 9 1886 1886 1965 2142 1886

3 1.8 × 106 0.013 6 1477 1477 1520 1614 1480

4 7.6 × 106 0.054 5 1304 1304 1332 1390 1308

5 2.3 × 107 0.163 4 1236 1236 1246 1277 1238

6 4.7 × 107 0.336 3 1209 1209 1213 1229 1210

7 7 × 107 0.501 3 1196 1196 1198 1204 1197

8 8.5 × 107 0.605 3 1190 1190 1190 1195 1190

9 9.2 × 107 0.656 2 1189 1189 1189 1189 1189

10 9.5 × 107 0.678 2 1188 1188 1188 1188 1188

cond-mat-2003 1 31163 120029 <0.001 1599 16 5379 5379 5493 5759 5379

2 1.4 × 106 0.003 8 2631 2631 2747 3088 2639

3 1.2 × 107 0.024 6 1939 1939 1999 2195 1967

4 5.9 × 107 0.122 4 1716 1716 1742 1820 1735

5 1.7 × 108 0.338 4 1640 1640 1650 1686 1648

6 2.8 × 108 0.572 3 1613 1613 1616 1632 1616

7 3.4 × 108 0.708 3 1604 1604 1605 1611 1605

8 3.7 × 108 0.76 2 1600 1600 1600 1602 1600

9 3.8 × 108 0.775 2 1599 1599 1599 1600 1599

cond-mat-2005 1 40421 175692 <0.001 1798 18 6508 6508 6637 7012 6509

2 2.6 × 106 0.003 9 3013 3013 3157 3598 3046

3 2.6 × 107 0.032 6 2170 2170 2235 2472 2210

4 1.3 × 108 0.164 5 1922 1922 1945 2038 1943

5 3.5 × 108 0.426 4 1840 1840 1848 1890 1847

6 5.4 × 108 0.658 4 ≥ 1798 - 1817 1829 1816

7 6.3 × 108 0.767 3 ≥ 1798 - 1804 1809 1803

8 6.5 × 108 0.802 3 ≥ 1798 - 1800 1803 1800

9 6.6 × 108 0.811 3 ≥ 1798 - 1799 1799 1799

10 6.6 × 108 0.813 2 1798 - 1798 1798 1798

hep-th 1 8361 15751 <0.001 1332 19 2613 2613 2630 2697 2613
2 84368 0.002 10 1768 1768 1803 1886 1768
3 376431 0.011 7 1517 1517 1541 1598 1517

4 1.3 × 106 0.038 5 1418 1418 1433 1463 1419

5 3.5 × 106 0.101 4 1374 1374 1384 1396 1375

6 6.9 × 106 0.199 4 1353 1353 1359 1364 1354

7 1.1 × 107 0.304 3 1342 1342 1347 1348 1342

8 1.4 × 107 0.387 3 1337 1337 1338 1339 1337

9 1.5 × 107 0.439 3 1334 1334 1334 1334 1334

10 1.6 × 107 0.467 2 1333 1333 1333 1333 1333

11 1.7 × 107 0.479 2 1332 1332 1332 1332 1332
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Table 3: Experimental results of the studied algorithms for network science instances with
only the largest component taken into account

graph k n m C δ c d γ CBC GRE ACO- RLSo
LS-S

Graphs from Newman’s network data repository (research collaboration networks [2]), largest component only

astro-ph 1 14845 119652 0.67 0.001 1 14 1892 1892 1970 2100 1892

2 1.8 × 106 0.613 0.016 7 436 436 502 635 444

3 1.5 × 107 0.66 0.133 5 135 135 159 214 142

4 4.8 × 107 0.815 0.438 4 46 46 55 74 53

5 8.2 × 107 0.905 0.743 3 16 16 20 25 17

6 108 0.958 0.908 3 7 7 9 9 7

7 1.1 × 108 0.985 0.972 2 3 3 3 3 3

8 1.1 × 108 0.995 0.992 2 1 1 1 1 1

cond-mat 1 13861 44619 0.651 <0.001 1 18 2172 2172 2220 2347 2172
2 318876 0.709 0.003 9 698 698 778 940 698

3 1.8 × 106 0.574 0.018 6 290 290 333 421 291

4 7.6 × 106 0.589 0.079 5 117 117 146 192 122

5 2.2 × 107 0.686 0.238 4 49 49 59 80 52

6 4.7 × 107 0.805 0.489 3 22 22 26 32 23

7 7 × 107 0.888 0.729 3 19 9 11 14 10

8 8.5 × 107 0.942 0.881 3 3 3 3 4 3

9 9.2 × 107 0.974 0.955 2 2 2 2 2 2

10 9.5 × 107 0.99 0.985 2 1 1 1 1 1

cond-mat-2003 1 27519 116181 0.655 <0.001 1 16 3742 3742 3853 4075 3742

2 1.4 × 106 0.66 0.004 8 1032 1032 1151 1483 1045

3 1.2 × 107 0.536 0.031 6 341 341 400 571 363

4 5.9 × 107 0.646 0.156 4 118 118 144 205 135

5 1.7 × 108 0.788 0.433 4 42 42 52 78 51

6 2.8 × 108 0.733 3 15 15 18 26 18

7 3.4 × 108 0.908 3 6 6 7 10 7

8 3.7 × 108 0.975 2 2 2 2 2 2

9 3.8 × 108 0.993 2 1 1 1 1 1

cond-mat-2005 1 36458 171735 0.657 <0.001 1 18 4678 4678 4807 5130 4678

2 2.6 × 106 0.643 0.004 9 1214 1214 1359 1753 1245

3 2.6 × 107 0.539 0.039 6 373 373 440 624 409

4 1.3 × 108 0.687 0.202 5 125 125 148 204 146

5 3.5 × 108 0.524 4 43 43 52 77 52

6 5.4 × 108 0.809 4 ≥ 2 - 20 26 17

7 6.3 × 108 0.943 3 ≥ 2 - 7 8 6

8 6.5 × 108 0.985 3 ≥ 2 - 3 3 3

9 6.6 × 108 0.996 3 2 - 2 2 2

10 6.6 × 108 0.999 2 1 - 1 1 1

hep-th 1 5835 13815 0.506 0.001 1 19 1241 1241 1260 1320 1241
2 81697 0.705 0.005 10 433 433 466 542 433
3 373571 0.614 0.022 7 186 186 211 256 186

4 1.3 × 106 0.634 0.079 5 87 87 102 122 87

5 3.5 × 106 0.7 0.207 4 43 43 53 58 44

6 6.9 × 106 0.791 0.408 4 22 22 28 29 23

7 1.1 × 107 0.859 0.623 3 11 11 16 15 11

8 1.4 × 107 0.911 0.794 3 6 6 7 7 6

9 1.5 × 107 0.949 0.901 3 3 3 3 3 3

10 1.6 × 107 0.975 0.958 2 2 2 2 2 2

11 1.7 × 107 0.989 0.984 2 1 1 1 1 1
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cond-mat-2005 represent three different stages of the evolution of a network
of condensed matter collaborations, and hep-th represents collaborations in
high energy theory [2].

Results for these instances are presented in two stages. Table 2 sum-
marises the results obtained for the entire collaboration networks with large
numbers of connected components c, while Table 3 presents the results for the
largest connected components only. For the collaboration networks, CBC also
provides optimal results for most of the instances. RLSo seems to provide—
quite consistently—the best results among the heuristics. Its results seem to
be closer to the optimum found by CBC for low and high values of k, with
larger gaps being left between the optimum and the result of RLSo for values
of k in the middle. Surprisingly, ACO-LS-S seems to lag behind the results of
both RLSo and GREEDY, which is in sharp contrast to the results obtained
for social networks. Several instances have been found with similar metrics
as observed for the social network samples. However, these were obtained
for higher values of k, as the diameters of these networks are shortened less
rapidly.

The limitations of CBC start to be noticeable for graph cond-mat-2005.
For k ≥ 6, CBC was unsuccessful, similarly to the results obtained for some of
the largest instances for social networks. For these instances, RLSo provided
the best result among the heuristics. However, no better than the trivial
lower bound was found.

The marginal values obtained for collaboration networks are considerably
higher than those for the social network samples. For network astro-ph, the
marginal value was k = 8, while for cond-mat, cond-mat-2003, and cond-
mat-2005, these were k = 10, k = 9, and k = 10, respectively. Since these
networks represent the state of condensed matter collaborations in progress-
ing years, this reveals that the evolution of the network over time does not
necessarily have to lead to an increase of the marginal value. This can per-
haps be explained by new collaborations being initiated by scientists over
time, which are modelled by edge introduction rather than attachment of
new vertices. For network netscience, we obtained a marginal value of k = 9,
while for hep-th, it was k = 11.

Results for power grid and Internet snapshot. For the power grid network
power, and for the Internet snapshot as-22july06, slightly different patterns
have been observed. These results are summarised in Table 4. The Internet
snapshot is a connected graph with critical value of k = 4 and a marginal
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Table 4: Experimental results of the studied algorithms for network science instances

graph k n m C δ c d γ CBC GRE ACO- RLSo
LS-S

Graphs from Newman’s network data repository (power grid and Internet snapshot)

power [52] 1 4941 6594 0.08 <0.001 1 46 1481 1481 1546 1650 1481
2 22629 0.653 0.002 23 658 658 717 806 658
3 53125 0.659 0.004 16 345 345 393 451 345
4 105233 0.686 0.009 12 207 207 239 276 207
5 185992 0.698 0.015 10 131 131 151 181 131
6 301550 0.716 0.025 8 83 83 100 118 83
7 460075 0.726 0.038 7 57 57 73 82 57
8 668664 0.736 0.055 6 37 37 48 54 37
9 932433 0.742 0.076 6 25 25 35 38 25

10 1.1 × 106 0.748 0.103 5 18 18 22 26 19

11 1.6 × 106 0.752 0.134 5 11 11 16 17 11

12 2.1 × 106 0.757 0.17 4 10 10 12 12 10

13 2.6 × 106 0.761 0.211 4 7 7 11 9 7

14 3.1 × 106 0.765 0.256 4 6 6 9 7 6

15 3.7 × 106 0.77 0.306 4 5 5 7 5 5

16 4.4 × 106 0.777 0.359 3 4 4 5 4 4

17 5.1 × 106 0.785 0.415 3 3 3 6 3 3

18 5.8 × 106 0.796 0.472 3 3 3 5 3 3

19 6.5 × 106 0.807 0.529 3 3 3 4 3 3

20 7.1 × 106 0.82 0.585 3 2 2 4 2 2

21 7.8 × 106 0.834 0.639 3 2 2 3 2 2

22 8.4 × 106 0.85 0.692 3 2 2 3 2 2

23 9.1 × 106 0.866 0.742 2 1 1 1 1 1

as-22july06* 1 22963 48436 0.23 <0.001 1 11 2026 2026 2028 2026 2026

2 1.1 × 107 0.832 0.042 6 312 312 313 388 312

3 9.6 × 107 0.84 0.363 4 47 47 51 67 47

4 2.1 × 108 0.793 3 8 8 8 8 8

5 2.5 × 108 0.963 3 2 2 2 2 2

6 2.6 × 108 0.996 2 1 1 1 1 1

* Snapshot of the Internet has not been previously published in a research paper. It is published in

Newman’s network data repository:

http://www-personal.umich.edu/∼mejn/netdata/.

value of k = 6. In the next paragraphs, it will be seen that this decline is
somewhat similar to the pattern observed for social networks. However, it is
worth mentioning that for as-22july06, RLSo outperformed ACO-LS-S, while
for social networks, this was reversed.

Network power is clearly the most resilient in terms of k-reachability.
Apparently, rather than being a small world network, this network is lattice-
based, with a grid as the underlying structure. RLSo produced the best
results for this network. ACO-LS-S and GREEDY performed less efficiently.
The critical value for power we obtained is k = 13, while the marginal value
is k = 23.

Results for easy problem instances. These instances include both instances
from Newman’s network data repository and DIMACS graphs. The exper-
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Figure 5: Visualisations of the generalised dominating set size, as a function of the “degree
of separation” k in logarithmic scale for y axis. Visualisations are provided for networks
gplus 20000, pokec 20000, gplus 50000, and pokec 50000. The presented values represent
the best bounds we were able to find using any approach.

imental results are presented in Table 5. For networks with more than one
connected component, the results obtained for the largest connected compo-
nents are given in Table 6.

Network adjnoun is a network of adjective-noun adjacencies for David
Copperfield [53]. Network football represents games in a season of an Amer-
ican college football league [1]. Instance lesmis represents a coappearance
network of characters for Les Miserables [54]. Instance netscience represents
network science collaborations [53]. Network zachary represents friendships
in a karate club [55]. Instance celegansneural represents a neural network for
C. Elegans [52]. Instance dolphins represents a social network of bottlenose
dolphins [49] illustrated above. Finally, polbooks is a network of Krebs’ po-
litical books, previously used in community detection literature [56].

DIMACS instances for graph colouring include coappearance networks
of characters for some of the famous literary works. Coappearance network
anna represents characters for Anna Karenina, homer represents Iliad and
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Figure 6: Visualisations of the k-reachable set profile γ, as a function of the “degree
of separation” k. Visualisations are provided for networks netscience, astro-ph, cond-
mat, cond-mat-2003, cond-mat-2005, and hep-th. The presented values represent the best
bounds we were able to find using any approach.

Odyssey, david represents David Copperfield, and huck is a coappearance
network for Huckleberry Finn.

An interesting observation is that RLSo performs well for these networks,
while ACO-LS-S and GREEDY overestimate the dominating set size for sev-
eral instances. For most of the small networks, including adjnoun, football,
lesmis, zachary, and celegansneural, the marginal value of k was obtained at
k = 3. Networks dolphins and polbooks are slightly different, with a “plateau”
of dominating set sizes for 3 ≤ k ≤ 4 for dolphins and 2 ≤ k ≤ 3 for polbooks.
Due to this phenomenon, these two networks seem slightly more resilient,
with marginal values k = 5 for dolphins and k = 4 for polbooks.

Impact of increased k on dominating set size. Apart from the computational
results of the algorithms, we are also interested in the decline of upper and
lower bounds for dominating set sizes as k grows.

Figure 5 represents the plots of such a decline for social network samples
from Google+ and Pokec. The x-axis in these plots represents the value of
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k and the y-axis is logarithmic, representing the dominating set size γ. For
three of the graphs, the optimal profile of γ was found, while for gplus 50000,
upper bounds γu and the lower bounds γl are provided.

The plots suggest that in social networks, the decline is very sharp, which
is supported by the small-world properties of these networks. For the scale
of several thousands of vertices, small dominating sets for k = 3 can already
guarantee a relatively wide reachability. For graphs with 50000 vertices, k =
4 was already a critical value, with the sampled k-reachable set sizes below
the threshold of 10. All the obtained values are currently within k ≤ 6, which
seems to be in line with the “six degrees of separation theory”. An interesting
open problem seems to be an estimation of how this value grows for larger
graph sizes. Given the potential sizes and densities of the shortcut graphs,
this may be investigated by means of graph decomposition techniques, and
possibly, elements of high performance computing. Another option could
be the exploration of representative network sampling methods [57], and an
extrapolation of the k-reachable set sizes, as well as the critical and marginal
values obtained from these samples.

Figure 6 presents the k-reachable set profiles for scientific collaboration
networks. These include astrophysics, condensed matter and high energy
theory. For all of these networks, the k-reachable set sizes represent the data
obtained for the largest connected components. Critical values for these
research collaboration networks seem to be located at higher values of k, as
the diameters of their shortcut graphs are slightly higher. The pattern of the
decline is also slightly milder, even though the plots indicate that the decline
may still be superpolynomially or even exponentially fast.

Figure 7 represents the non-increasing profiles for dominating set sizes for
the power grid and the Internet snapshot. The power grid network power is
by far the most resilient network among all instances, which is most probably
related to the fact that the underlying structure of it is a grid, rather than
a scale-free structure. The obtained values indicate a pattern of a gradual
slowdown, with non-uniform decline and flat regions obtained especially for
higher values of k. Despite this fact, structural vulnerabilities of power grids
have previously been identified [58]. Network as-22july06 is a snapshot of
the Internet on the level of autonomous systems, reconstructed from BGP
tables. The network shows a profile, which is very similar to profiles observed
for social networks, with a very sharp decline of the k-reachable set size and
a critical value of k = 4.

Last but not least, a comparison of the k-reachable set profiles for net-
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Figure 7: Visualisations of the k-reachable set profile γ, as a function of the “degree of
separation” k. Visualisations are provided for networks power and as-22july06. These
plots use logarithmic scale for y axis.

works of similar origin is given in Figure 8. These were obtained for the
social networks, as well as for the research collaboration networks. For so-
cial networks, one can observe very similar decline patterns. An increase in
the number of vertices seems to have an impact on the value observed for
k = 1, with the rest of the values scaling comparably. For research collabo-
ration networks, astro-ph has the steepest profile, while hep-th exhibits the
most moderate decline of γ. The profiles for cond-mat, cond-mat-2003 and
cond-mat-2005 are similar at first sight. However, while cond-mat-2005 has
the highest value of γ for k = 1, one can notice that this is not the case
for k = 7. This suggests that the processes linked to the evolution of these
networks may have a complex impact on k-reachability.

5. Discussion and Conclusions

We presented a technique for mining of k-reachable sets in real-world
networks. A k-reachable set represents a set of vertices of a network such
that all vertices can be reached within distance k from some vertex of the
k-reachable set.

The concept of shortcut graphs has been introduced to model the k-
reachability, and approaches to solve the minimum dominating set (MDS)
problem were employed to find k-reachable sets for a diverse set of real-
world networks. The data set for our experiments included samples from
two social network services, as well as network science data, particularly
research collaboration networks, a power grid and an Internet snapshot.
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Figure 8: Comparative visualisations of the k-reachable set profile γ for the social networks
and research collaboration networks.

For most instances, the approach based on an integer linear programming
(ILP) formulation and the application of an open-source ILP branch-and-cut
solver led to optimal results. However, the memory demands of the ILP-
based approach tend to grow very quickly, making it unsuccessful for some
of the largest graphs with high values of k. Therefore, we also explored
the use of three heuristics, including a greedy approximation algorithm, an
ant-based algorithm ACO-LS-S and an order-based algorithm RLSo. Inter-
estingly, RLSo works well for most instances, while ACO-LS-S has shown
stronger performance for shortcut graphs of large social networks.

Patterns of the decline of k-reachable set size with growing k have been
investigated. Social networks exhibit a pattern of a very sharp decline, which
is in line with their small-world structure. A similar pattern was observed
for the Internet snapshot. A slightly slower decline is exhibited for research
collaboration networks, even though this still seems likely to be superpoly-
nomial. On the other hand, a very slow decline profile was observed for the
power grid.
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Table 5: Experimental results of the studied algorithms for easy problem instances.

graph k n m C δ c d γ CBC GRE ACO- RLSo
LS-S

Graphs from Newman’s network data repository

adjnoun [53] 1 112 425 0.173 0.068 1 5 18 18 18 18 18
2 3082 0.779 0.496 3 3 3 4 3 3
3 5634 0.944 0.906 2 1 1 1 1 1

football [1] 1 115 613 0.403 0.094 1 4 12 12 13 13 12
2 2919 0.56 0.445 2 3 3 4 3 3
3 6247 0.957 0.953 2 1 1 1 1 1

lesmis [54] 1 77 254 0.573 0.087 1 5 10 10 10 10 10
2 1249 0.864 0.426 3 2 2 2 2 2
3 2500 0.923 0.854 2 1 1 1 1 1

netscience [53] 1 1589 2742 0.638 0.002 396 17 477 477 477 482 477
2 6722 0.736 0.005 9 418 418 421 423 418
3 13087 0.731 0.01 6 404 404 407 404 404
4 22847 0.738 0.018 5 400 400 402 400 400
5 34931 0.742 0.028 4 398 398 400 398 398
6 47479 0.752 0.038 3 397 397 398 397 397
7 58734 0.764 0.047 3 397 397 397 397 397
8 66083 0.774 0.052 3 397 397 397 397 397
9 70436 0.78 0.056 2 396 396 396 396 396

zachary [55] 1 34 78 0.571 0.139 1 5 4 4 4 4 4
2 343 0.861 0.611 3 2 2 2 2 2
3 480 0.922 0.856 2 1 1 1 1 1

celegansneural [52] 1 297 2148 0.292 0.049 1 5 16 16 17 16 16
2 24122 0.766 0.549 3 3 3 3 3 3
3 41637 0.965 0.947 2 1 1 1 1 1

dolphins [49] 1 62 159 0.259 0.08408 1 8 14 14 15 14 14
2 607 0.729 0.321 4 4 4 5 4 4
3 1107 0.842 0.585 3 2 2 3 2 2
4 1459 0.897 0.772 2 2 2 2 2 2
5 1717 0.944 0.908 2 1 1 1 1 1

polbooks* 1 105 441 0.488 0.081 1 7 13 13 14 13 13
2 2002 0.764 0.367 4 2 2 2 2 2
3 3510 0.846 0.643 3 2 2 2 2 2
4 4685 0.917 0.858 2 1 1 1 1 1

DIMACS graphs [47]

anna 1 138 493 0.653 0.052 1 5 12 12 12 12 12
2 5131 0.86 0.543 3 3 3 3 3 3
3 9087 0.984 0.961 2 1 1 1 1 1

homer 1 561 1628 0.404 0.01 12 9 96 96 96 96 96
2 21738 0.819 0.139 5 31 31 32 31 31
3 91537 0.848 0.583 3 16 16 16 16 16
4 133957 0.939 0.853 3 14 14 14 14 14
5 143912 0.968 0.916 2 12 12 12 12 12

david 1 87 406 0.688 0.109 1 3 2 2 2 2 2
2 3539 0.979 0.946 2 1 1 1 1 1

huck 1 74 301 0.774 0.111 3 4 9 9 9 9 9
2 1737 0.896 0.643 2 3 3 3 3 3
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Table 6: Experimental results of the studied algorithms for easy problem instances with
only the largest component taken into account.

graph k n m C δ c d γ CBC GRE ACO- RLSo
LS-S

Graphs from Newman’s network data repository

netscience [53] 1 379 914 0.741 0.013 1 17 55 55 55 56 55
2 3830 0.831 0.053 9 21 21 23 22 21
3 9523 0.784 0.133 6 7 7 10 8 7
4 18892 0.792 0.264 5 5 5 7 5 5
5 30667 0.805 0.428 4 3 3 5 3 3
6 43019 0.84 0.601 3 2 2 3 2 2
7 54228 0.888 0.757 3 2 2 2 2 2
8 61577 0.928 0.86 3 2 2 2 2 2
9 65930 0.953 0.92 2 1 1 1 1 1

DIMACS graphs [47]

homer 1 542 1619 0.413 0.011 1 9 85 85 85 85 85
2 21728 0.837 0.148 5 20 20 21 21 20
3 91527 0.867 0.624 3 5 5 5 5 5
4 133947 0.961 0.914 3 3 3 3 3 3
5 143902 0.991 0.982 2 1 1 1 1 1

huck 1 69 297 0.786 0.127 1 4 7 7 7 7 7
2 1733 0.917 0.739 2 1 1 1 1 1
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