
Population-based and Learning-based Metaheuristic
Algorithms for the Graph Coloring Problem

David Chalupa
Institute of Applied Informatics

Faculty of Informatics and Information Technologies
Slovak University of Technology

Ilkovicova 3
84216 Bratislava, Slovakia

chalupa.david@gmail.com

ABSTRACT
In this paper, two new metaheuristic algorithms for the
graph coloring problem are introduced. The first one is a
population-based multiagent evolutionary algorithm (MEA),
using a multiagent system, where an agent represents a tabu
search procedure. Rather than using a single long-term lo-
cal search procedure, it uses more agents representing short-
term local search procedures. Instead of a specific crossover,
MEA uses relatively general mechanisms from artificial life,
such as lifespans and elite list [3, 4]. We are introducing
and investigating a new parametrization system, along with
a mechanism of reward and punishment for agents accord-
ing to change in their fitness. The second algorithm is a
pseudo-reactive tabu search (PRTS), introducing a new on-
line learning strategy to balance its own parameter settings.
Basically, it is inspired by the idea to learn tabu tenure pa-
rameters instead of using constants. Both algorithms em-
pirically outperform basic tabu search algorithm TabuCol
[8] on the well-established DIMACS instances [10]. How-
ever, they achieve this by using different strategies. This
indeed shows a difference in potential of population-based
and learning-based graph coloring metaheuristics.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: Heuristic methods;
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland. (C) ACM, (2011). This is
the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was
published in Proceedings of the 13th annual conference on Genetic and evo-
lutionary computation, http://doi.acm.org/10.1145/nnnnnn.nnnnnn.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Keywords
Graph Coloring, Tabu Search, Metaheuristics, Multiagent
Systems, Pseudo-reactive Tabu Search, Parameter Learning

1. INTRODUCTION
Let G = [V,E] be an undirected graph and let c be a num-

ber of colors. The objective of the graph coloring problem
is to find a partitioning of the vertex set V into color classes
V1, V2, ..., Vc such that:

1. the color classes cover the whole vertex set:
V1 ∪ V2 ∪ ... ∪ Vc = V and

2. the number of adjacent vertices in the same color cla-
sses is minimal:

J =

n−1∑
i=1

n∑
j=i+1

confl(i, j)→ min, where

confl(i, j) =

{
1 ∃k : vi ∈ Vk ∧ vj ∈ Vk ∧ [vi, vj] ∈ E
0 otherwise

(1)

In the terms of evolutionary computation, the traditional
approach is based on maximization of a so-called fitness
function. Due to this fact, we state the problem as max-
imization of the following fitness function: F = |E| − J . If
two connected vertices are equally colored, we will refer to
this situation as a collision. The minimal number of colors
needed to color a graph with no collisions is called chromatic
number and denoted as χ.

2. RELATED WORK
The most traditional algorithms are the constructive heu-

ristics that simply build the solution iteratively. Usually,
greedy approach is used to determine vertex and color for
particular iteration. The most popular constructive algo-
rithm is the Brélaz heuristic, using degrees of vertices and
their current saturations1 [2].

Another well-established approach is the local search. Lo-
cal search algorithms iteratively try to improve fitness by
using small modifications called moves or mutations. In a
majority of current local search graph coloring methods, if
a move is performed, an inverse move is forbidden for sev-
eral iterations to prevent cycling. This approach is known

1Saturation of a vertex is the number of its neighboring ver-
tices which are already colored.

as tabu search. The number of iterations, for which a move
is forbidden, is called tabu tenure. The most popular tabu
search algorithm for the graph coloring is TabuCol, intro-
duced by Hertz and De Werra [8]. This algorithm iterates
over colorings, where each vertex is colored and simply min-
imizes the number of collisions. TabuCol is widely used as a
subroutine in various hybrid evolutionary algorithms [5, 7,
11, 14]. Another interesting tabu search algorithm is called
PartialCol, which uses representation initially proposed by
Morgenstern [13]. The idea is to use partial legal colorings
of subgraphs instead of coloring every vertex. For more de-
tailed information about this approach, reader may refer to
paper by Blöchliger and Zufferey [1].

The most successful heuristics up-to-date are hybrid evo-
lutionary algorithms, usually combining a crossover and a
local search procedure [5, 7, 11, 14]. First very strong hybrid
algorithms were proposed by Dorne and Hao [5] and Galin-
ier and Hao [7] that used a greedy procedure to recombine
color classes from two parents. Another interesting example
of hybrid evolutionary approach is the EvoCol algorithm by
Porumbel, et al. [14]. This method uses a partition-based
crossover of multiple parents and a diversification strategy
based on distances between individuals in the state space.

The first approach we propose, a multiagent evolution-
ary algorithm (MEA), is basically inspired by an experimen-
tal algorithm proposed by Comellas and Martinez-Navarro,
called the Bumblebees algorithm [4]. This approach uses
a simulation of bumblebees, collecting food in an artificial
world, and introduces several mechanisms, which we further
developed in our work, such as the lifespan, agent’s birth
and the elite list. In fact, MEA was developed from a syn-
thesis of Bumblebees algorithm with TabuCol. The Bumble-
bees algorithm was also developed from another multiagent
approach, using a mixed population of eternal and mortal
agents, called Angels and Mortals [3].

3. BASIC TABU SEARCH FOR THE GRA-
PH COLORING PROBLEM

As we have already mentioned, TabuCol was the first
and still is the most popular tabu search algorithm for the
graph coloring problem. Because this algorithm represents a
groundstone for both algorithms proposed in this paper, we
will further describe it in this section. Basically, TabuCol
starts with an initial coloring (usually a random assignment
of colors to vertices) and improves it iteratively with muta-
tions [8].

Suppose that we have an actual coloring S, on which we
are going to perform a mutation. A conflicting vertex is a
vertex, which is involved in at least one collision. A neigh-
borhood N(S) is then defined as a set of all colorings ob-
tained from S by recoloring every conflicting vertex with
every other possible color. From these colorings, a ”training”
subset V ∗ is chosen, each of the colorings in V ∗ is evaluated
by the fitness function and the one with the highest fitness
is chosen as a new actual coloring S∗. This process is it-
eratively repeated until a maximal number of iterations is
reached or an optimal coloring is found. Note that if a tabu
move leads to a coloring that has a higher fitness than any-
thing else found so far, tabu search accepts it, despite the
fact that it is tabu. This is called the aspiration condition
[8].

When V ∗ = N(S), the neighborhood construction can

S

N(S)

V*

Figure 1: The neighborhood.

be done systematically, we will later refer to this as to the
precise approach. When V ∗ 6= N(S), a subset of colorings
with predefined size must be randomly chosen. We will refer
to this as to the lazy approach.

When we perform these moves, it is quite easy to get
trapped, cycling in an uninteresting region of the state space.
Suppose that vertex v had a color c1 and the search algo-
rithm recolored it with c2. Thus, the move is defined by the
couple [v, c2]. However, the inverse move [v, c1] would lead
the search back to the previous state. Thus, the tabu search
forbids this move for a number of iterations defined by the
tabu tenure [8].

Generally, it has been verified that static definition of the
tabu tenure by a constant is ineffective. Dorne and Hao
have proposed a dynamic tabu tenure, using the number of
conflicting vertices, i.e. the number of vertices meaningful
to recolor, as a metric for the calculation [5]:

tl = αf(S) + random(0, A− 1), (2)

where α and A are constants, random(a, b) returns quasir-
andom integer between a and b and f(S) denotes the number
of conflicting vertices in S. The α and A constants are usu-
ally set to α = 0.6 and A = 10 as proposed by Galinier and
Hao [7]. This scheme was later called a DYN scheme [1]. It
is by far the most widely used tabu scheme in current graph
coloring literature.

4. MULTIAGENT EVOLUTIONARY ALG-
ORITHM

The multiagent system we propose works with a popula-
tion of individuals, each representing a potential solution to
the problem. From this point of view, this basic concept
is quite similar to traditional genetic algorithms. However,
our method is only mutation-based, it does not need any
crossover operator. The mutation mechanism is encapsu-
lated in a procedure of local search. This allows us to pre-
serve general nature of the multiagent system, there is no
need for problem-specific knowledge in this general frame-
work. All the specific information needed for the graph col-
oring problem is located only in the formulation of the local
search.

4.1 General framework
The process starts with an initialization of the population.

In operation generate agents(), we generate |P0| agents, each
representing an entirely random coloring. In the beginning,
each agent is assigned a lifespan. The initial value of lifespan
is given simply by parameter q of our model.

The initialization is followed by an iterative procedure,
consisting of generations. In each generation, we first check
for an optimal solution in the population. Then, in op-
eration decrease lifespans(), we decrement lifespan of each
agent by a single unit. If an agent reaches zero lifespan, it
is eliminated in procedure eliminate(). Step agent’s birth()
is performed only each Tb generations, where Tb is a param-
eter of our algorithm. In this step, a new agent is born and
a state from a so-called elite list is assigned to it. Agent’s
birth does not explicitly use any other information from the
previous agents. Next, each agent performs local search()
for a certain number of iterations. In the last operation of
evaluation(), lifespan of an agent is modified according to
change in the fitness. The whole multiagent approach is
described by the pseudocode of Algorithm 1.

At this point, let us further look on the operations of
elimination and birth. Our algorithm uses a data structure
called elite list to record several states previously found by
eliminated agents. These states are then assigned to newly
born agents. In fact, this means that the algorithm does
restarts from some previous partially optimized states.

The elite list is not just a data structure to record the
best states found in the search process. It is managed by
the following rules:

1. Each agent can pass only one state to the elite list per
its life and this happens at the time of its elimination.

2. State, which is passed to the elite list, must be a result
of local search in some generation. It cannot be an
intermediate result.

3. Passed state is accepted by the elite list only if its
fitness is at least equal to fitness of the worst state in
the elite list. If there are more of worst states, the one
to be replaced is chosen quasirandomly.

First, we explain the intuitive view of the elite list man-
agement conditions. First condition means that an agent
cannot pass more than one state to the elite list. This means
that even when a single agent is able to ”fly away” and sud-
denly find a path to states with higher fitness than any other
agent, it is not allowed to pass all these states to the elite
list, thus preserving natural diversity in the elite list. The
second condition is illustrated by Figure 2. Suppose that
this is a curve generated by fitness function over an agent’s
life. The vertical lines illustrate the moments, when the lo-
cal search in a generation finishes. We will refer to them
as so-called milestones. Restricting the set of states eligible
for the elite list to the milestones simply reduces the risk
of restarting the local search in a local optimum. In our
preliminary experiments, this was shown to be an efficient
strategy when dealing with local optima - not to overcome
them but to evade them when doing a restart.

One may probably also ask, why is the search restarted
in a previously visited state, when an agent is born. Graph
coloring instances tend to generate very large plateaux, on
which tabu search performs randomly. This is due to the

Figure 2: The milestones.

fact that neighborhood may contain multiple states with
highest fitness. These restarts, although very simple in con-
cept, provide much help to search in promising regions more
precisely.

In the next part, we will discuss the tabu search procedure,
performed in the operation of local search. However, after
the local search finishes, we compare fitness of the initial
state and final state obtained after the search in the evalua-
tion operation. If the final state has higher fitness than the
initial, agent gains r units of lifespan. On the other hand, if
the final state has lower or equal fitness as the initial, agent
loses r units of lifespan. The value of r is a parameter of our
algorithm.

4.2 Tabu search subroutine
In the procedure of local search, our algorithm simply

performs TabuCol for each agent with the dynamic tabu
tenure (with α = 0.6 and A = 10), as we already mentioned
in Section 3. The maximal number of iterations of tabu
search that an agent performs in a single generation, is given
by the following formula:

tmax = β
c|V |
|V ∗| . (3)

The number of colors c and the number of vertices |V |
are used as metrics of the instance size, to provide more
iterations for larger instances. On the other hand, the higher
the ”training”neighborhood size |V ∗| is, the lower number of
iterations is performed. This is useful not only to balance the
computational demands of different agents but it also helps
to extend the search when being very close to the global
optimum. Parameter β is used to tune the performance.
Note that for this calculation, we use the neighborhood size
|V ∗| at the beginning of the tabu search in a generation.

We use both the precise and lazy approach, as we men-
tioned in Section 3. Percentage of precise agents is denoted
by parameter p of our algorithm. When doing the lazy tabu
search, the ”training” neighborhood size |V ∗| is fixed in the
beginning of a particular generation by the following for-
mula:

|V ∗| = random(f(S), (c− 1)f(S)). (4)

The amount of conflicting vertices f(S) is used as the
lower bound for |V ∗| to avoid using extremely small neigh-
borhoods that cause rapid reduction of fitness. The value
(c − 1)f(S) is the size of the largest meaningful neighbor-
hood, equal to |N(S)|. In the case of precise approach,
V ∗ = N(S), so one does not have to define |V ∗| explicitly.

5. PSEUDO-REACTIVE TABU SEARCH
The second algorithm, presented in this paper, is a pseudo-

reactive tabu search. It is basically inspired by the reactive

Algorithm 1: The multiagent optimization model
The multiagent optimization model

1 generate agents()
2 for g = 1..gmax

3 best agent = find best agent()
4 if best agent.fitness = optimal fitness
5 return S = best agent.state
6 decrease lifespans()
7 eliminate()
8 agent’s birth()
9 local search()
10 evaluation()
11 return S = best state ever found()

tabu search that observes fluctuation of the fitness function
for a certain period of time and increments the tabu tenure,
when the search seems to be trapped according to this fluc-
tuation. Typical example of a reactive tabu scheme is the
FOO scheme introduced by Blöchliger and Zufferey [1].

Pseudo-reactive approach is based on a similar idea. How-
ever, instead of directly incrementing the tabu tenure, it
changes parameters, from which the tenure is calculated.
Tabu tenure is then influenced indirectly, providing advan-
tages of both reactive tabu tenure and the dynamic tabu
tenure used in MEA.

5.1 Pseudo-reactive tabu tenure
Our pseudo-reactive tabu tenure is calculated with a very

similar formula, as the dynamic tabu tenure:

tl =
αT

10
f(S) +A, (5)

where A is no longer a parameter of randomization (see
Section 3), but simply an increment of the tabu tenure.

Parameters α and A are no longer fixed, but restricted
only by predefined intervals, in which the algorithm is able
to move. Instead of αT = 6, we use αT ∈ {0, 1, 2, ..., 19, 20}
and instead of A = 10, we use A ∈ {0, 1, 2, ..., 49, 50}.

In the beginning, we generate α and A with uniform dis-
tribution over these intervals. Then, we observe behavior
of fitness during periods of φ iterations, similarly as in the
reactive approach [1]. We take the highest value Fh and
lowest value Fl of fitness during this period and evaluate
difference Fh − Fl. We define two thresholds: b and c. If
Fh − Fl ≤ b, the search seems to be trapped and we change
the parameters to provide longer tabu tenure. On the other
hand, when Fh + c ≤ FBEST , where FBEST is fitness of
the best coloring found so far, the search may be unable
to find high-quality colorings due to long tabu tenure, so we
change the parameters to provide shorter tabu tenure. With
certain probability pmut, parameters are also changed even
when none of this two conditions is fulfilled.

5.2 Parameter mutations
If Fh−Fl ≤ b, we randomly choose one of the 5 parameters

to change (see Table 1). Value of this parameter is changed
by a mutation. Parameters αT , A, b are mutated by an
increment and φ and c are mutated by a decrement in this
case. The mutation value is uniformly generated according
to Table 1 (mutation columns).

If Fh + c ≤ FBEST , the process is the same. However,
the mutation ”directions” are reversed. Parameters αT , A, b

are mutated by a decrement and φ and c are mutated by an
increment. The intervals for mutation values are also given
by Table 1.

Using this strategy, the algorithm is provided by a simple
but efficient mechanism of self-balancing for the parame-
ter values. While α and A influence the tabu tenure di-
rectly, b and c influence the observation, whether the search
is blocked or too diversified by a long tabu tenure. Shorter
observation period φ is more strict because low fluctuation
or low values of fitness may occur more likely in shorter
periods of time.

Finally, even when the search does not seem to be trapped
or too diversified, mutation may be also performed with
small probability pmut = 0.01. This component is used due
to the fact that even the space of parameters seems to have
its local optima, when the fitness function may not seem
to indicate problems during the search, but the algorithm is
cycling or denying high-quality colorings due to overtraining
of the model. Mutation helps to give the algorithm chance
to recover from such situations. In this case, the parame-
ter is chosen randomly, too. The ”direction” of mutation -
incrementing or decrementing is also chosen randomly.

6. EXPERIMENTAL RESULTS
In our experiments, we focused on three types of DIMACS

instances, commonly used in current graph coloring litera-
ture and often referred to as difficult DIMACS instances
[10].

Leighton graphs consist of several cliques, connected by
randomly generated edges. Maximum size of a clique, em-
bedded in a Leighton graph, is denoted by a predefined chro-
matic number of the graph. Leighton graphs represent an
abstraction of large scheduling problems [12]. We have cho-
sen four most difficult Leighton graphs, two 15-colorable and
25-colorable instances.

Flat graphs are generated by first partitioning the vertex
set into approximately equally sized clusters. Then, edges
are put only between vertices in different clusters. Thus,
solution of a flat graph represents restoration of the initial
clustering. Leighton and flat graphs represent structured
difficult instances of the problem [10].

Finally, dsjc graphs are entirely random graphs. They
were generated with predefined number of vertices and edge
density. Contrary to the structured instances, random gra-
phs do not have guaranteed chromatic number [6].

6.1 Experimental results of MEA

Table 1: Borderline intervals for parameter values and their mutations
Borderlines Mutation

parameter min max min max
αT 0 10 0 1
A 0 20 0 2
φ 500 5000 0 500
b 0 10 0 1
c 0 10 0 1

After a series of preliminary experiments, we have chosen
a generic configuration of our algorithm. During investi-
gation of some subset of parameters, the other ones were
constant, according to this generic configuration. Table 2
contains the generic values, |P0| = |Le| is the size of initial
population and the elite list, q and Tb are the maximal lifes-
pan and birth period, r is the reward / punishment for the
evaluation, p is the percentage of precise agents and β influ-
ences the local search length. During the investigation, we
used time limit of 10 minutes per each run of the algorithm.

In preliminary experiments, we observed that lazy ap-
proach is efficient only on Leighton graphs le450 15c and
le450 15d. These graphs generate extremely large plateaux
that can be evaded this way. For other instances, we used
a population of precise agents (p = 100%). Parameter
|P0| = |Le| influences the number of colorings that are ex-
plicitly stored. Optimal value strongly depends on instance.
For example, for easier instances like le450 15x or dsjc500.1,
it is more efficient to use smaller values, because larger
population and elite list would only make the algorithm
slower. On the other hand, for instances like le450 25x or
dsjc500.9, where single TabuCol is not efficient, larger elite
list is needed. We finally chose |P0| = |Le| = 20 that was
shown to be a good compromise.

Table 3 illustrates influence of β on performance of MEA.
The first three columns contain the instance name, the num-
ber of vertices and the chromatic number and the number
of colors used by the algorithm. The following two columns
contain parameter values for p and β. The next columns con-
tain the success rate (number of successful runs / number
of all runs), average number of colorings evaluated during
the search (in millions), average number of local search iter-
ations (in thousands) and average running time of MEA on
one run of the algorithm. This structure of ”scoresheet” is
used also in the following tables. On le450 15c, we observed
that short tabu search subroutines generate more changes in
the neighborhood size |V ∗| and provide more dynamics to
the lazy approach we used. Due to this fact, lazy popula-
tion works well with smaller values of β. However, for a more
typical instance dsjc500.1, we observed that small values of
β are destructive, because the local search simply does not
have enough time to overcome local optima and the elite list
either changes very slowly or is not able to change at all. For
precise approach, we finally chose β = 100. On dsjc500.1,
this seems not to be the optimal choice, but it is important
to provide enough time also to more tricky instances.

The maximal lifespan q and period of birth Tb are the
parameters of natality and mortality in MEA. After some
time, the population size stabilizes its value close to q

Tb
. This

may be changed by the evaluation operation, when lifespan
is modified, and influenced by the instance, however, the

mentioned formula is a good estimate. Table 4 contains
results regarding these parameters. First, we can see that a
short life (small q) has a similar influence as smaller β. The
difference between these scenarios, however, is that by using
a small β, the milestones (see Section 4) are more dense
than by simply a shorter lifetime of an agent. Parameters
q and Tb work well in configurations, when the population
is larger in the beginning, to provide diversity, and smaller
after some time, to provide speed for the algorithm. This is
why we finally used q = 500 and Tb = 100.

Table 5 contains detailed results of MEA on the DIMACS
instances. The structure is similar to previous tables. Vari-
ant / limit column contains information about the parame-
ters we used. For lazy variant, we used β = 5 and p = 0%,
for precise variant, we used β = 100 and p = 100%. The
time limit was either 1 hour or 3 hours.

As we have mentioned, on le450 15x Leighton graphs, lazy
variant of MEA performs very smoothly. However, precise
approach does not achieve such results at all. Surprisingly,
on le450 25x instances, the situation is reversed. We have
obtained much better results by using a pure population of
precise agents. Regarding success rates and time limit, per-
formance of MEA on Leighton graphs is very encouraging.
On the flat graphs, MEA performs comparably to Tabu-
Col. This is caused by the fact that flat graphs are very
specific instances, for which a partial representation [1] or a
learning-based approach such as PRTS seems to be gener-
ally more appropriate. On random graphs, MEA achieves
more interesting results. On dsjc500.5 instance, it is able to
stabilize results of TabuCol to provide a solid success rate
with 49 colors and even manages to find a 48-coloring. On
dsjc500.9 instance, it is able to find 126-colorings, while for
TabuCol, current literature reports only 127-colorings [1, 9].

Based on these observations, we can say that MEA clearly
outperforms TabuCol. Comparison to other algorithms will
be provided in the next section.

6.2 Experimental results of PRTS
Contrary to MEA, PRTS does not need parameter inves-

tigation to be properly set. Intervals for each parameter can
be determined quite intuitively and pmut is just set to a small
value, in our case 0.01 (see Section 5). No other information
is needed. Because PRTS is an extension of TabuCol, we
are interested in comparison between these two algorithms
that is presented in Table 6. The time limit was 1 hour for
both algorithms.

On le450 15x instances, PRTS definitely outperforms Ta-
buCol. Large plateaux that were evaded by lazy approach
in MEA, are now overcome by the ability of PRTS to learn
the right tabu tenure parameters. On le450 25x instances,
PRTS is much slower, due to the learning effort. No 25-

Table 2: Generic configuration of MEA
|P0| = |Le| q Tb r p β
20 500 100 1 100% 100

Table 3: Influence of local search length (β) on MEA

G |V |, χ c p β succ. st. ×106 it. ×103 CPU
le450 15c 450, 15 15 0% 5 5/5 662 2370 84 s

20 5/5 2881 14791 6 m
50 5/5 1255 4935 3 m
100 4/5 2140 9626 4 m

dsjc500.1 500, ? 12 100% 5 1/5 10855 96586 8 m
20 5/5 5606 38757 3 m
50 4/5 9616 68326 5 m
100 4/5 9582 64545 5 m

colorings were obtained. However, embedding PRTS in a
population-based method or using simply a longer time limit
would be sufficient ways how to find these colorings. Flat
graphs provide very interesting results. On flat 300 26 0,
PRTS is surprisingly much faster than TabuCol. On graph
flat 300 28 0, PRTS was even able to find a 30-coloring,
which is known to be hard, even MEA did not manage to
find it, along with many other population-based algorithms.
Although the success rate is low, we have confirmed this
achievement by reobtaining 30-colorings also in repeated ex-
periments. These results indicate overtraining of parameters
in the standard dynamic tabu tenure. Note that landscape
of the flat graphs’ state space is quite specific, for exam-
ple, on flat 300 28 0, algorithms either find a 30-coloring
with more (3− 5) collisions or directly an optimal solution.
However, on flat 1000 76 0, PRTS does perform worse than
TabuCol, so there does not seem to be a clear connection
between topology and tabu tenure parameters. On ran-
dom graphs, performance of PRTS is also varied. While
on dsjc500.1, PRTS is slightly slower and on dsjc500.9 it
does achieve worse success rate, on dsjc500.5, PRTS per-
forms much more reliably than TabuCol. This performance
indicates that PRTS is also useful, when TabuCol is not able
to achieve high success rate due to the overtraining issues.

Summarizing these results and regarding the numbers of
colors that algorithms need, we can say that PRTS outper-
forms TabuCol. There are instances, where PRTS is slower,
however, it does not clearly increase the number of colors
needed to find an optimal coloring.

7. CONCLUSION AND DISCUSSION
At this point, we summarize results of MEA and PRTS

and provide a high-level comparison of their results to 3
other local search methods and 4 other population-based
algorithms. Table 7 summarizes the numbers of colors suc-
cessfully used by all 9 algorithms.

Between the population-based algorithms, only MEA and
DCNS [13] do not use crossovers. Thus, a comparison be-
tween these algorithms might be interesting. Although MEA
and DCNS use different representations, they perform com-
parably on structured graphs. However, on random graphs,
MEA achieves better results. Other current research works
also provide evidence that representation used by MEA is

more appropriate for random graphs [1]. When comparing
algorithms with crossovers and without crossovers, we can
find some quite interesting observations. While algorithms
with crossovers clearly perform better on random graphs,
Leighton graphs do not seem to need a crossover at all. On
the flat graphs, situation is even more extreme. While on
flat300 28 0, local search clearly outperforms population-
based algorithms, on flat1000 76 0, crossovers improve re-
sults quite significantly.

Regarding the results of PRTS, one should compare them
especially to other local search algorithms. Here, PRTS
outperforms TabuCol and provides competitive results to
PartialCol. The only method that provides stronger results
than PRTS, is the Variable Space Search (VSS) [9], which
is a much more complicated algorithm that uses 3 differ-
ent representations and state spaces. Thus, we can say that
PRTS is a very good compromise between implementation
complexity and performance.

This analysis shows that, indeed, different instances need
different approaches. Even when there are algorithms that
are able to provide strong performance on a majority of
instances [11, 14], they generally synthesize crossovers, lo-
cal search and diversification. Thus, these methods are not
trivial to implement. On the other hand, MEA and PRTS
achieve remarkable results by using only intuitive and quite
general mechanisms. Finally, we believe that ideas such as
using of lifespans or learning-based tabu scheme may open
possibilities to find new strong heuristics not only for the
graph coloring problem but also to other combinatorial op-
timization problems.

Acknowledgement
This contribution was supported by Grant Agency VEGA
SR under the grant 1/0141/10.

8. REFERENCES
[1] I. Blöchliger and N. Zufferey. A graph coloring

heuristic using partial solutions and a reactive tabu
scheme. Computers and Operations Research,
35(3):960–975, 2008.

[2] D. Brélaz. New methods to color vertices of a graph.
Communications of the ACM, 22:251–256, 1979.

Table 4: Influence of natality and mortality (q and Tb) on MEA

G |V |, χ c p q Tb succ. st. ×106 it. ×103 CPU
le450 15c 450, 15 15 0% 50 10 5/5 1643 7766 4 m

500 100 4/5 2140 9626 4 m
200 10 4/5 2438 11868 5 m
500 25 4/5 2513 11445 6 m

dsjc500.1 500, ? 12 100% 50 10 1/5 13242 118500 8 m
500 100 4/5 9582 64545 5 m
200 10 3/5 14336 115649 8 m
500 25 3/5 7321 4609 6 m

Table 5: Computational results of MEA
G |V |, χ c variant / limit succ. st. ×106 it. ×103 CPU
le450 15c 450, 15 15 lazy / 1 h 10/10 1221 5554 4 m
le450 15d 450, 15 15 lazy / 1 h 10/10 2521 13911 7 m

le450 25c 450, 25 25 precise / 1 h 7/10 63434 186748 33 m
26 10/10 259 440 5 s

le450 25d 450, 25 25 precise / 1 h 8/10 91366 214872 42 m
26 10/10 2969 562 5 s

flat300 26 0 300, 26 26 precise / 1 h 10/10 4960 1342 80 s
flat300 28 0 300, 28 31 precise / 1 h 10/10 11172 15466 3 m
flat1000 76 0 1000, 76 87 precise / 3 h 1/5 510717 191261 3 h

88 5/5 103981 45848 39 m

dsjc500.1 500, ? 12 precise / 1 h 10/10 7756 47880 4 m
dsjc500.5 500, ? 48 precise / 3 h 1/5 583309 270404 3 h

49 5/5 117298 83177 40 m
dsjc500.9 500, ? 126 precise / 3 h 3/5 368142 174580 2 h

Table 6: Computational results of PRTS and TabuCol within time limit of 1 hour
Instance Pseudo-reactive TS TabuCol (basic TS)

G |V |, χ c succ. st. ×106 it. ×103 CPU succ. st. ×106 it. ×103 CPU
le450 15c 450, 15 15 10/10 6606 19807 4 m 0/10

16 10/10 660 606 20 s 10/10 54 242 3 s
le450 15d 450, 15 15 7/10 33316 143418 27 m 0/10

16 10/10 890 1115 28 s 10/10 129 781 4 s

le450 25c 450, 25 26 10/10 1894 3624 70 s 10/10 33 110 2 s
le450 25d 450, 25 26 10/10 1872 3259 64 s 10/10 27 77 1 s

flat 300 26 0 300, 26 26 10/10 651 196 17 s 10/10 2226 614 63 s
flat 300 28 0 300, 28 30 1/10 93873 140164 58 m 0/10

31 10/10 10490 20040 7 m 10/10 10236 14562 7 m
flat 1000 76 0 1000, 76 88 1/5 83761 48700 51 m 4/5 53696 28470 34 m

dsjc500.1 500, ? 12 10/10 5523 36348 5 m 10/10 3368 26364 3 m
dsjc500.5 500, ? 49 6/10 51392 56662 35 m 3/10 91285 62784 49 m
dsjc500.9 500, ? 127 9/10 33119 13707 18 m 10/10 8568 5130 6 m

Table 7: Numbers of colors needed by MEA, PRTS and state-of-the-art algorithms
Local search algorithms Population-based algorithms

G PRTS TabuCol PartialCol VSS MEA DCNS GH EvoCol MACol
[1] [9] [13] [7] [14] [11]

le450 15c 15 16 15 15 15 15 15 - 15
le450 15d 15 16 15 15 15 15 - - 15
le450 25c 26 26 27 26 25 25 26 25 25
le450 25d 26 26 27 26 25 25 - 25 25
flat300 26 0 26 26 26 26 26 26 - - 26
flat300 28 0 30 31 28 29 31 31 31 31 29
flat1000 76 0 88 88 88 87 87 89 83 82 82
dsjc500.1 12 12 12 12 12 12 - 12 12
dsjc500.5 49 49 49 48 48 49 48 48 48
dsjc500.9 127 127 127 126 126 128 - 126 126

[3] F. Comellas and R. Gallegos. Angels & Mortals: A
New Combinatorial Optimization Algorithm. Studies
in Fuzziness and Soft Computing, 166:397–405, 2005.

[4] F. Comellas and J. Martinez-Navarro. Bumblebees: A
Multiagent Combinatorial Optimization Algorithm
Inspired by Social Insect Behaviour. In Proceedings of
the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, pages 811–814.
ACM/SIGEVO, 2009.

[5] R. Dorne and J. K. Hao. A new genetic local search
algorithm for graph coloring. 1498:745–754, 1998.

[6] e. a. D.S. Johnson. Optimization by simulated
annealing: an experimental evaluation; part ii, graph
coloring and number partitioning.

[7] P. Galinier and J. K. Hao. Hybrid Evolutionary
Algorithms for Graph Coloring. Journal of
Combinatorial Optimization, 3:379–397, 1999.

[8] A. Hertz and D. de Werra. Using tabu search
techniques for graph coloring. Computing,
39(4):345–351, 1987.

[9] A. Hertz, M. Plumettaz, and N. Zufferey. Variable
space search for graph coloring.

[10] D. Johnson and M. Trick. Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation
Challenge. American Mathematical Society, 1996.

[11] Z. Lü and J. Hao. A Memetic Algorithm for Graph
Coloring. European Journal of Operational Research,
203(1):241–250, 2010.

[12] F. Leighton. A graph coloring algorithm for large
scheduling problems.

[13] C. Morgenstern. Distributed coloration neighborhood
search. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, pages 335–358,
1996.

[14] D. Porumbel, J. Hao, and P. Kuntz. Diversity Control
and Multi-Parent Recombination for Evolutionary
Graph Coloring Algorithms. In Proceedings of the 9th
European Conference on Evolutionary Computation in
Combinatorial Optimization, pages 121–132, 2009.

